Issue |
E3S Web Conf.
Volume 498, 2024
III International Conference on Actual Problems of the Energy Complex: Mining, Production, Transmission, Processing and Environmental Protection (ICAPE2024)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 7 | |
Section | Problems of the Energy Complex | |
DOI | https://doi.org/10.1051/e3sconf/202449801005 | |
Published online | 06 March 2024 |
Technology of the porous granular material out of thermal power engineering waste
Rudny Industrial University, Rudny, 111500, Republic of Kazakhstan
* Corresponding author: psm58@mail.ru
The article presents the results of resource-saving technology development of porous granular material. Research is devoted to the development of scientific ideas about highly porous structures formation. The research objective is to develop a low-energy technology for producing porous granules based on the multiple use of thermal power engineering waste. Research novelty lies in conformity with a principle of combined porous structure’s formation of granules during thermal swelling of molding sand based on technogenic materials. Mixture of liquid sodium glass, fly ash and ash aluminosilicate microsphere has been developed to obtain the granules. Techniques for granulating liquid glass mixture have been developed. The parameters for thermal treatment of granules have been established to ensure formation of a strong, porous, and water-resistant structure. Physicomechanical and thermal properties of porous granules fired at a temperature of 350°С were studied. Microstructure of the fired granules was studied; their porosity is of 78 – 80%, bulk density is 210 – 230 kg/m3, and the thermal conductivity coefficient is 0.084 – 0.085 W/(m·°С). There has been developed a technological scheme for production of a granular material based on finely dispersed thermal power engineering waste. Comparative analysis of characteristics of the developed material and expanded clay was carried out.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.