Issue |
E3S Web of Conf.
Volume 507, 2024
International Conference on Futuristic Trends in Engineering, Science & Technology (ICFTEST-2024)
|
|
---|---|---|
Article Number | 01041 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/e3sconf/202450701041 | |
Published online | 29 March 2024 |
An IoT-based animal detection system using an interdisciplinary approach
1 Department of AIMLE, GRIET, Hyderabad, Telangana, India.
2 The Islamic university, Najaf, Iraq
3 Department of Mechanical Engineering, New Horizon College of Engineering, Bangalore, Karnataka, India.
4 Lovely Professional University, Phagwara, Punjab, India.
5 Lloyd Institute of Engineering & Technology, Knowledge Park II, Greater Noida, Uttar Pradesh, India.
* Corresponding author: mamidi.kirankumar09@gmail.com
Nowadays, educational institutions particularly colleges, engaged with students and staff, frequently confront various security challenges in their day-to-day activities. One prominent concern involves the threat of animal bites on the campus. In response to this issue, campus management has traditionally resorted to human patrols and physical barriers to deter animals. To address this multifaceted security challenge, the proposed method “An IoT-based Animal Detection System Using Interdisciplinary Approaches” introduces an innovative solution that leverages the power of IoT technology to enhance campus safety and security significantly. The system deploys a surveillance robot equipped with ultrasonic sensors and ESP32 cameras, employingthe machine learning technique R-CNN for Animal Detection. This proposed method uses an interdisciplinary approach to develop an animal detection system capable of identifying and classifying various species. This proposed method aims to revolutionize campus security by seamlessly integrating advanced technology, mitigating risks proactively, streamlining processes through automation, and presenting a cost-effective alternative to traditional security approaches. Beyond the traditional methods, the proposed system achieves an impressive accuracy rate of animal detection approximately 97.6% enabling real-time alerts through push notifications to security personnel upon detection.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.