Issue |
E3S Web Conf.
Volume 516, 2024
10th Conference on Emerging Energy and Process Technology (CONCEPT 2023)
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 6 | |
Section | Material Science | |
DOI | https://doi.org/10.1051/e3sconf/202451602005 | |
Published online | 15 April 2024 |
Structural elucidation of Cr2O3-Al2O3 catalyst: Synthesis & characterization
1 Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Johor, Kampus Pasir Gudang, 81750 Masai, Johor, Malaysia.
2 Advanced Biomaterials and Carbon Development, Universiti Teknologi MARA, Shah Alam, Malaysia.
* Corresponding author: nurha8558@uitm.edu.my
The development of active, stable, and low-cost catalysts for efficient reactions is appealing but difficult. The objectives of this study are to synthesize Cr2O3-Al2O3 catalysts and analyze their physical properties using SEM, XRD, TGA-DTA, and FTIR. The impregnation method was used to create Cr2O3-Al2O3 catalysts with five different chromium oxide loadings (3wt%, 6wt%, 9wt%, 12wt%, and 15wt%). The physical properties of the catalysts were characterized using FTIR, SEM, BET, and TGA. The FTIR spectra and SEM images of the samples confirmed that Cr2O3 was successfully incorporated on Al2O3 support. TGA was used to evaluate the weight loss and thermal stability of the catalysts during the calcination process. The hydroxyl groups of alumina, as well as its water affinity, cause more mass loss when heated because water molecules are released. The addition of chromium oxide, on the other hand, alters thermal interactions, resulting in different mass loss behavior for chromium oxide alumina. The surface area changes seen by BET analysis gave insights into the structural flexibility of the catalyst across varied loading levels. The physical properties of synthesized catalysts demonstrated their ability to be utilized in a variety of catalytic reactions.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.