Issue |
E3S Web Conf.
Volume 522, 2024
2023 9th International Symposium on Vehicle Emission Supervision and Environment Protection (VESEP2023)
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/202452201007 | |
Published online | 07 May 2024 |
Experimental analysis and research on the effect of long-term vibration on the performance of vehicle carbon canisters
1 Tianjin University State Key Laboratory of Internal Combustion Engine, Tianjin 300350, China
2 Ingevity Performance MATERIALS Co., Ltd., Zhuhai 519050, China
* Corresponding author: carden.yu@hotmail.com
The long-term vibration of the carbon canister during vehicle operation can lead to changes in its performance, thereby affecting its performance on evaporation emissions. A vibration test bench simulating vehicle vibration characteristics is used to simulate the working state of the carbon canister under actual driving conditions, analyze the amount of carbon powder precipitation and flow resistance changes in the canister after long-term operation, and compare the adsorption and desorption performance of the canister before and after aging and their effect on the evaporative emissions. The results showed that the carbon canister will produce carbon powder precipitation after being continuously subjected to the forward and backward vibration of the vehicle. This leads to a decrease in the ultimate adsorption and desorption capacity of the aged carbon canister for fuel vapor, with a more significant decrease in adsorption capacity. However, in the 2-day Diurnal Breathing Loss(DBL) test, due to the increase in flow resistance of the aged carbon canister, it is more difficult for the adsorbed fuel vapor to diffuse outward. For the unsaturated carbon canister, fuel leakage and evaporative emissions can be reduced. In evaporative emission management, it is necessary to adjust the control strategy reasonably based on the working status of the carbon canister.
Key words: Evaporative emission / Carbon canister / Vibration aging
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.