Issue |
E3S Web Conf.
Volume 523, 2024
53rd AiCARR International Conference “From NZEB to ZEB: The Buildings of the Next Decades for a Healthy and Sustainable Future”
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 13 | |
Section | Innovation in Buildings Components and Technologies | |
DOI | https://doi.org/10.1051/e3sconf/202452301002 | |
Published online | 07 May 2024 |
The Impact of Placement-Related Effects in Air-Cooled Cooling Chillers on Energy Efficiency
Üntes Air Conditioning Systems, 06520 Ankara, Turkey
* Corresponding author: burakozel@untes.com.tr
In air-cooled chillers, it is recommended to leave specific distances between elements such as walls surrounding the air-cooled chillers to advance heat transfer. Additionally, the positioning is an effective parameter based on the incidence of the sun, as condenser waste heat dissipation becomes more challenging due to solar radiation. Therefore, efficient-based analyses of parameters related to integrated effects need to be conducted. In this study, the flow of the chiller in a baseline geometry is examined, and the temperature of the air passing over the condenser is determined using computational fluid dynamics (CFD) analysis in the first place. Initially, the effect of the solar radiation direction is examined. Then, the wall distances and wall height around the cooling unit are parametrically defined. Different design points are identified, and a design of experiment (DOE) analysis is performed to study the integrated effect between each factor. The results are graphically visualized using the response surface method (RSM). Based on the analysis, a three-parameter layout optimization study is conducted, including the chiller-to-wall width, chiller-to-wall depth, and wall height. This way, the appropriate layout for air-cooled chiller is determined. Consequently, the impact of these parameters on efficiency and capacity is determined through flow analysis. The analyses are repeated for high-capacity chillers with condenser fans placed on top and low-capacity unit with side fans.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.