Issue |
E3S Web of Conf.
Volume 529, 2024
International Conference on Sustainable Goals in Materials, Energy and Environment (ICSMEE’24)
|
|
---|---|---|
Article Number | 04019 | |
Number of page(s) | 15 | |
Section | Advanced Interdisciplinary Approaches | |
DOI | https://doi.org/10.1051/e3sconf/202452904019 | |
Published online | 29 May 2024 |
Deep Learning-Based Semantic Segmentation for Legal Texts: Unveiling Rhetorical Roles in Legal Case Documents
1 Department of Computer Science and Engineering, SOE CUSAT, Cochin, Kerala, India
2 Department of Computer Science and Engineering, SOE CUSAT, Cochin, Kerala, India
* Corresponding author: moh22divya@gmail.com
The swift rise of digitization in legal documentation has opened doors for artificial intelligence to revolutionize various tasks within the legal domain. Among these tasks is the segmentation of legal documents using rhetorical labels. This process, known as rhetorical role labeling, involves assigning labels (such as Final Judgment, Argument, Fact, etc.) to sentences within a legal case document. This task can be down streamed to various major legal analytics problems such as summarization of legal documents, readability of lengthy case documents, document similarity estimation, etc. The mentioned task of semantic segmentation of documents via labels is challenging as the legal documents are lengthy, unstructured and the labels are subjective in nature. Various previous works on automatic rhetorical role labeling was carried out using methods like conditional random fields with handcrafted features, etc. This research focuses on analyzing case documents from two different legal systems: the High Court of Kerala and the High Court of Justice in the United Kingdom. Through rigorous experimentation with a range of deep learning models, this study highlights the robustness and efficacy of deep learning methods in accurately labeling rhetorical roles within legal texts. Additionally, comprehensive annotation of legal case documents from the UK and analysis of inter-annotator agreement are conducted. The overarching objective of this research is to design systems that facilitate a deeper comprehension of the organizational structure inherent in legal case documents.
Key words: Legal Document Segmentation / Rhetorical Role Labeling / Meta Embedding / Hierarchical Bi-LSTM CRF,BERT
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.