Issue |
E3S Web Conf.
Volume 552, 2024
16th International Conference on Materials Processing and Characterization (ICMPC 2024)
|
|
---|---|---|
Article Number | 01027 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/202455201027 | |
Published online | 23 July 2024 |
Compressive strength assessment in additively manufactured sustainable poly lactic acid specimens as per ASTM D695 standard
Department of Mechanical Engineering, Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India.
* Corresponding Author: shivrajyeole@vnrvjiet.in
Relative benefits over traditional manufacturing processes have made fused deposition modeling (FDM)-based 3D printing as prevalent among various fields and sectors. However, the mechanical traits of 3D-printed FDM parts are still a matter of research that primarily depends upon the material used. In addition to acrylonitrile butadiene styrene (ABS) material, another sustainable polymer used in the FDM is polylactic acid (PLA). This study evaluated the compressive strength of 3D-printed PLA specimens consistent with ASTM D695 standard. The test specimens were simulated in ANSYS software to assess the compression strength and deformation of the specimens. Five ASTM specimens were additively manufactured on a Makerbot printer with a 0.3 mm layer resolution, 100% infill rate, 215°C extrusion temperature and standard build speed. The specimens were conditioned in line with ASTM D695 standard. The compressive strengths of the specimens measured on a universal testing machine were correlated with the simulated results. The compressive strength of the specimens was found to be close to the standard strength.
Key words: Compression testing / Polylactic acid / ASTM D695 / 3D printing
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.