Issue |
E3S Web Conf.
Volume 552, 2024
16th International Conference on Materials Processing and Characterization (ICMPC 2024)
|
|
---|---|---|
Article Number | 01050 | |
Number of page(s) | 22 | |
DOI | https://doi.org/10.1051/e3sconf/202455201050 | |
Published online | 23 July 2024 |
Biosorption of nickel by ground fallen waste coffee plant leaves powder: Equilibrium, kinetics, Thermodynamics and Optimization (RSM)
Department of Chemical Engineering, Colleg of Engineering, Andhra University, Visakhapatnam, Andhra Pradesh, India
* Corresponding Author: dr.mtbai@andhrauniversity.edu.in
This study reports the biosorption of nickel using powdered fallen coffee leaves. BET, SEM, FTIR, and XRD characterize the biosorbents. We go over the findings from thermodynamic, kinetic, and equilibrium biosorption experiments. Here are some of the factors that were studied: agitation duration (t), biosorbent size, pH of the aqueous solution (ranging from 1 to 8), initial nickel concentration (C0), pH (ranging from 5 to 150), temperature (ranging from 283 to 323), and so on. Coffee leaf powder is best when the pH is 4. This biosorbent pair works best when dosed at 18 g/L for nickel biosorption. Nitrogen absorption is 4.219 mg/g when coffee leaf powder is used. For nickel biosorption, CCD has optimized four parameters. The data on nickel biosorption are tightly matched to the biosorbent model of pseudo-second-order. The negative sign of the free energy change (ΔG) for coffee leaf powder (-1546 J/mol) reflects both the practicality and spontaneous nature of the biosorbent-material. Powdered coffee leaves are predicted to undergo enthalpy changes of 62.99 J/mol K and entropy changes of 51.08 J/mol K. When the value of ΔS is positive, it indicates that the randomness is increasing, and when the value of enthalpy change is positive, it indicates that the process is endothermic.
Key words: coffee waste / Biosorption / Nickel / Coffee plant leaves / waste fallen plant / pollutant
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.