Issue |
E3S Web Conf.
Volume 569, 2024
GeoAmericas 2024 - 5th Pan-American Conference on Geosynthetics
|
|
---|---|---|
Article Number | 02002 | |
Number of page(s) | 8 | |
Section | Roads & Railways 1 | |
DOI | https://doi.org/10.1051/e3sconf/202456902002 | |
Published online | 19 September 2024 |
Evaluation of structural performance of thinasphalt pavement reinforced with wicking geotextiles over expansive soils
1,2 Zachry Department of Civil and Environmental Engineering, Texas A&M University, USA.
3,4 Solmax, USA
* Corresponding author: nripojyoti.biswas@tamu.edu
This research provides a comprehensive evaluation of the effects of a wicking geotextile capable of multiple functions, including separation and reinforcement and gravity and capillary suction-induced drainage for subsurface layers in flexible pavements built over expansive soils. Two test sections were designed and constructed near central Texas, which were prone to distress from cyclic moisture-induced strains related to expansive soils, during the Fall of 2018. The base layers in the first and second sections were constructed with reclaimed asphalt pavement and crushed stone aggregate, respectively, and wicking geotextiles were installed between the base and subgrade layers. The adjacent lane to the test sections was selected as the control section. Falling weight deflectometer (FWD) testing was conducted to evaluate the in-situ moduli of the pavement layers. Multiple performance indicators were selected to compare the performance of reinforced and control sections. A performance prediction software program was used to investigate the performance of the sections according to the mechanistic-empirical design and analysis approach. The results showed the rapid removal of moisture has a significant impact on controlling the permanent deformation of the pavement layer. FWD results revealed that the reinforced layer helped to improve the base and subgrade moduli values. The performance prediction results showed the wicking geotextile has the potential to be used for reinforcing the pavements constructed over expansive soil
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.