Open Access
Issue |
E3S Web of Conferences
Volume 1, 2013
Proceedings of the 16th International Conference on Heavy Metals in the Environment
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 4 | |
Section | Heavy Metals in Sediments I: Interactions, Remediation, and Management | |
DOI | https://doi.org/10.1051/e3sconf/20130102001 | |
Published online | 23 April 2013 |
- Campbell KM., Root R., O’Day PA., Hering J.G. A gelprobe equilibrium sampler for measuring arsenic porewater profiles and sorption gradients in sediments: I. Laboratory Development. Environ. Sci. Technol. 2008; 42:497–503. [CrossRef] [PubMed] [Google Scholar]
- Davison W, Zhang H. In situ speciation measurements of trace components in natural waters using thinfilm gels. Nature 1994; 367:546–548. [CrossRef] [Google Scholar]
- Di Toro DM, Mahony JH, Hansen DJ, Scott KJ, Hicks MB, Mayr SM, Redmond M. Toxicity of cadmium in sediments: the role of acid volatile sulfides. Environ. Toxicol. Chem. 1990; 9:1487–1502. [CrossRef] [Google Scholar]
- Edenborn HM. Rapid detection of bioavailable heavy metals in sediment porewaters using acid-volatile sulfide gel probes. Environmental Geology 2005; 47:660–669. [CrossRef] [Google Scholar]
- Fan W, Wang W-X. Sediment geochemical controls on Cd, Cr, and Zn assimilation by the clam Ruditapes philippinarum. Environ. Toxicol. Chem. 2001; 20:2309–2317. [PubMed] [Google Scholar]
- Hall GEM, Vaive JE, Beer R, Hoashi M. Selective leaches revisited, with emphasis on the amorphous Fe oxyhydroxide phase extraction. J. Geochem. Exploration 1996; 56:59–78. [CrossRef] [Google Scholar]
- Hansen DJ, Berry WJ, Mahony JD, Boothman WS. Predicting the toxicity of metal-contaminated field sediments using interstitial concentration of metals and acid-volatile normalizations. Environ. Toxicol. Chem. 1996; 15:2080–2094. [CrossRef] [Google Scholar]
- ISO.11074: Soil-quality-Vocabulary. ISO, Geneva, Switzerland. 2005. [Google Scholar]
- Knox AS, Paller MH, Nelson E, Specht W, Gladden J. Contaminant assessment and their distribution and stability in constructed wetland sediments, J. Environ. Qual. 2006; 35: 1948–1959. [CrossRef] [PubMed] [Google Scholar]
- Lawrence AL, McAloon KM, Mason R, Mayer M. Intestinal solubilization of particle-associated organic and inorganic mercury as a measure of bioavailability to benthic invertebrates. Environ. Sci. Technol. 1999; 33:1871–1876. [CrossRef] [Google Scholar]
- Lee B-G., Griscom SB, Lee J-S, Choi HJ, Koh C-H, Luoma SN, Fischer NS. Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments. Science 2000; 287: 282–284. [CrossRef] [PubMed] [Google Scholar]
- Mayer LM, Chen Z, Findlay RH, Fang J, Sampson S, Self RFL, Jumars PA, Quetel C, Donard OFX. Bioavailability of sedimentary contaminants subject to deposit-feeder digestion. Environ. Sci. Technol. 1996; 30:2641–2645. [CrossRef] [Google Scholar]
- Peijnenburg W, Posthuma L, Eijsackers H, Allen H. A conceptual framework for implementation of bioavailability of metals for environmental management purposes. Ecotoxicol. Environ. Saf. 1997; 37:163–172. [CrossRef] [PubMed] [Google Scholar]
- Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979; 51:844–850. [Google Scholar]
- US EPA. The incidence and severity of sediment contamination in surface waters of the United States. National sediment survey: second edition. EPA/823/R-01/01. (Draft). U.S. Environmental Protection Agency, Washington, D.C. 2001. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.