Open Access
E3S Web of Conferences
Volume 1, 2013
Proceedings of the 16th International Conference on Heavy Metals in the Environment
Article Number 06003
Number of page(s) 4
Section Heavy Metals in Sediments II: Hg in Sediments
Published online 23 April 2013
  1. Benoit JM, Gilmour CC, Mason RP, Heyes A. Sulfide Controls on Mercury Speciation and Bioavailability to Methylating Bacteria in Sediment Pore Waters. Environ Sci Technol 1999; 33:951–957. [CrossRef] [Google Scholar]
  2. Compeau G, Bartha R. Sulphate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 1985; 50:498–502. [PubMed] [Google Scholar]
  3. Covelli S, Faganeli J, Horvat M, Brambati A. Mercury contamination of coastal sediments as the result of long-term cinnabar activity (Gulf of Trieste, northern Adriatic Sea). Appl Geochem 2001; 16:541–558. [CrossRef] [Google Scholar]
  4. Covelli S, Piani R, Kotnik J, Horvat M, Faganeli J, Brambati A. Behaviour of Hg species in a microtidal deltaic system: The Isonzo River mouth (northern Adriatic Sea). Sci Total Environ 2006; 368:210–223. [CrossRef] [PubMed] [Google Scholar]
  5. Covelli S, Piani R, Acquavita A, Predonzani S, Faganeli J. Transport and dispersion of particulate Hg associated to a river plume in coastal Northern Adriatic environments. Mar Pollut Bull 2007; 55:436–450. [CrossRef] [PubMed] [Google Scholar]
  6. Covelli S, Faganeli J, De Vittor C, Predonzani S, Acquavita A, Horvat M. Benthic fluxes of mercury species in a lagoon environment (Grado lagoon, Northern Adriatic Sea, Italy). Appl Geochem 2008; 23:529–546. [CrossRef] [Google Scholar]
  7. Emili A, Koron N, Covelli S, Faganeli J, Acquavita A, Predonzani S, De Vittor C. Does anoxia affect mercury cycling at the sediment–water interface in the Gulf of Trieste (northern Adriatic Sea)? Incubation experiments using benthic flux chambers. Appl Geochem 2011; 26:194–204. [CrossRef] [Google Scholar]
  8. Faganeli J, Pezdic J, Ogorelec B, Herndl GJ, Dolenec T. The role of sedimentary biogeochemistry in the formation of hypoxia in shallow coastal waters (Gulf of Trieste, Northern Adriatic). In: Tyson, R.V., Pearson, T.H. (Eds.), Modern and Ancient Continental Shelf Anoxia. Geological Society, London, Spec 1991. Publ. 58, pp. 107–117. [Google Scholar]
  9. Faganeli J, Horvat M, Covelli S, Fajon V, Logar M, Lipej L, Cermelj B. Mercury and methylmercury in the Gulf of Trieste (northern Adriatic Sea). Sci Total Environ 2003; 304:315–326. [CrossRef] [PubMed] [Google Scholar]
  10. Fitzgerald WF, Lamborg CH, Hammerschmidt CR. Marine biogeochemical cycling of mercury. Chem Rev 2007; 107:641–662. [CrossRef] [PubMed] [Google Scholar]
  11. Grasshoff K, Ehrhardt M, Kremling K. Methods of Seawater Analysis, 2nd ed. Verlag Chemie, Weinheim, 1983. [Google Scholar]
  12. Hines ME, Faganeli J, Adatto I, Horvat M. Microbial Mercury transformations in marine, estuarine and freshwater sediment downstream of the Idrija Mercury Mine, Slovenia. Appl Geochem 2006; 21:1924–1939. [CrossRef] [Google Scholar]
  13. Horvat M, Miklavčič V, Pihlar B. Determination of total mercury in coal fly ash by gold amalgamation cold vapour atomic absorption spectrometry. Anal Chim Acta 1991; 243:71–79. [CrossRef] [Google Scholar]
  14. Horvat M, Bloom NS, Liang L. Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples: Part I. Sediments. Anal Chim Acta 1993a; 281:135–152. [CrossRef] [Google Scholar]
  15. Horvat M, Bloom NS, Liang L. Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples: Part II. Water. Anal Chim Acta 1993b; 282:153–168. [CrossRef] [Google Scholar]
  16. Horvat M, Covelli S, Faganeli J, Logar M, Mandic V, Rajar R, Sirca A, Zagar D. Mercury in contaminated coastal environments; a case study: the Gulf of Trieste. Sci Total Environ 1999; 237/238:43–56. [CrossRef] [Google Scholar]
  17. Liang L, Bloom NS, Horvat M. Simultaneous determination of mercury speciation in biological materials by GC/CVAFS after ethylation and room temperature precollection. Clin Chem 1994a; 40:602–607. [Google Scholar]
  18. Liang L, Horvat M, Bloom NS. An improved method for speciation of mercury by aqueous phase ethylation, room temperature precollection, GC separation and CV AFS detection. Talanta 1994b; 41:371–379. [CrossRef] [PubMed] [Google Scholar]
  19. Merritt KA, Amirbahman A. Mercury methylation dynamics in estuarine and coastal marine environments – a critical review. Earth Sci Rev 2009; 96:54–66. [CrossRef] [Google Scholar]
  20. Ogrinc N, Faganeli J. Phosphorus regeneration and burial in near-shore marine sediments (the Gulf of Trieste, northern Adriatic Sea). Estuar Coast Shelf Sci 2006; 67:579–588. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.