Open Access
E3S Web of Conferences
Volume 1, 2013
Proceedings of the 16th International Conference on Heavy Metals in the Environment
Article Number 19008
Number of page(s) 4
Section Heavy Metals in Contaminated Sites II: Mining and Smelting
Published online 23 April 2013
  1. Arthur E.L., Rice P.J., Anderson T.A., Baladi S.M., Henderson K.L.D., and Coast J.R. 2005. Phytoremediation: an overview. Critical Reviews in Plant Sciences, 24, 109–122. [CrossRef] [Google Scholar]
  2. Frérot H., Lefèbvre C., Gruber W., Collin C., Dos Santos A., and Escarré J. 2006. Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant and Soil, 282, 53–65. [CrossRef] [Google Scholar]
  3. Fukuda N., Hokura A., Kitajima N., Terada Y., Saito H., Abed T., Nakai A. 2008. Micro X-ray fluorescence imaging and micro X-ray absorption spectroscopy of cadmium hyper-accumulating plant, Arabidopsis halleri ssp. gemmifera, using high-energy synchrotron radiation. Journal of Analytical Atomic Spectrometry 23, 1068–1075. [CrossRef] [Google Scholar]
  4. Hokura A., Onuma R., Kitajima N., Terada Y., Saito H., Abed T., Yoshida S., Nakai I. 2006. 2-D X-ray fluorescence imaging of cadmium hyperaccumulating plants by using high-energy synchrotron radiation X-ray microbeam. Chemistry Letters 826 35, 1246–1247. [CrossRef] [Google Scholar]
  5. Isaure MP, Fayard B, Sarret G, Pairis S, Bourguignon J. 2006. Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochimica Acta- Part B Atomic Spectroscopy, 61, 1242–1252. [CrossRef] [Google Scholar]
  6. Isaure MP, Sarret G, Harada E, Choi YE, Marcus MA, Fakra SC, Geoffroy N, Pairis S, Susini J, Clemens S, Manceau A (2010) Calcium promotes cadmium elimination as vaterite grains by tobacco trichomes. Geochimica et Cosmochimica Acta, 74, 5817–5834. [CrossRef] [Google Scholar]
  7. Küpper H., Lombi E., Zhao F.J., McGrath S.P. 2000. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212, 75–84. [CrossRef] [PubMed] [Google Scholar]
  8. Küpper H., Mijovilovich A., Meyer-Klaucke W., Kroneck P.M. 2004. Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by x-ray absorption spectroscopy. Plant Physiology 134: 748–757. [CrossRef] [PubMed] [Google Scholar]
  9. Mahieu S., Frérot H., Vidal C., Galiana A., Heulin K., Maure L., Brunel B., Lefèbvre C., Escarré J. and Cleyet-Marel J.C. 2011. Anthyllis vulneraria/Mesorhizobium metallidurans, an efficient symbiotic nitrogen fixing association able to grow in mine tailings highly contaminated by Zn, Pb and Cd. Plant Soil 342: 405–417. [CrossRef] [Google Scholar]
  10. Verbruggen N., Hermans C., Schat H. 2009. Molecular mechanisms of metal hyper-accumulation in plants. New Phytologist 181, 759–776. [CrossRef] [Google Scholar]
  11. Vogel-Mikŭs K., Regvar M., Mesjasz-Przybylowicz J., Przybylowicz W.J., Simcic J., Pelicon P., Budnar M. 2008. Spatial distribution of cadmium in leaves of metal hyperaccumulating Thlaspi praecox using micro-PIXE. New Phytologist 179, 712–721 [CrossRef] [Google Scholar]
  12. Zhao F.J., Lombi E., Breedon T., McGrath S., 2000. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant, Cell & Environment 23, 507–514. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.