Open Access
E3S Web of Conferences
Volume 1, 2013
Proceedings of the 16th International Conference on Heavy Metals in the Environment
Article Number 29009
Number of page(s) 4
Section Biomonitoring of Ecosystems I
Published online 23 April 2013
  1. Alia, Saradhi PP. Proline accumulation under heavy metal stress. J Plant Physiol 1991; 138: 504–508. [Google Scholar]
  2. Baker AJM, McGrath SP, Reeves RD, Smith JAC. Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils in: Phytoremediation of contaminated soil and water, ed. Terry N. and G. Bañuelos, Boca Raton, FL: Lewis Publishers 2000: 85–107. [Google Scholar]
  3. Banerjee S, Flores-Rozas H. Cadmium inhibits mismatch repair by blocking the ATPase activity of the MSH2–MSH6 complex. Nucleic Acids Res 2005; 33: 1410–1419. [CrossRef] [PubMed] [Google Scholar]
  4. Benavides MP, Gallego SM, Tomaro ML. Cadmium toxicity in plants. Braz J Plant Physiol 2005; 17 (1): 21–34. [Google Scholar]
  5. Chen YX, He YF, Luo YM, Yu YL, Lin Q, Wong MH. Physiological mechanism of plant roots exposed to cadmium. Chemosphere 2003; 50: 789–793. [CrossRef] [PubMed] [Google Scholar]
  6. Cosio C, Martinoia E, Keller C. Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 2004; 134: 716–725. [CrossRef] [PubMed] [Google Scholar]
  7. Costa G., Morel JL. Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol Bioch 1994; 32: 561–570. [Google Scholar]
  8. Deng DM, Shu WS, Zhang J, Zou HL, Ye ZH, Wong MH, Lin Z. Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii. Environ Pollut 2007; 147: 381–386. [CrossRef] [PubMed] [Google Scholar]
  9. Hassan Z, Aarts MGM. Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environ Exp Bot 2011; 72: 53–63. [CrossRef] [Google Scholar]
  10. Lombi E, Zhao FJ, Dunham SJ, McGrath SP. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 2000; 145: 11–20. [CrossRef] [Google Scholar]
  11. Lombi E., Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 2002; 128: 1359–1367. [CrossRef] [PubMed] [Google Scholar]
  12. Miholová D, Mader P, Száková J, Slámová A, Svato Z. 1993. Czechoslovak biological certified reference materials and their use in the analytical quality assurance systemin a trace element laboratory. Fresen J Anal Chem 1993; 51: 256–260. [CrossRef] [Google Scholar]
  13. Pavlík M, Pavlíková D, Balík J, Neuberg M. The contents of amino acids and sterols in maize plants growing under different nitrogen conditions. Plant Soil Environ 2010; 56: 125–132. [Google Scholar]
  14. Peer WA, Mamoudian M, Lahner B, Reeves RD, Murphy AS, Salt DE. Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area. New Phytol 2003; 159: 421–430. [CrossRef] [Google Scholar]
  15. Reeves RD, Schwartz C, Morel JL, Edmondson J. Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediat 2001; 3: 145–172. [CrossRef] [Google Scholar]
  16. Roosens NH, Leplae R, Bernard C, Verbruggen N. Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a study case. Planta 2005; 222: 716–729. [CrossRef] [PubMed] [Google Scholar]
  17. Sanità di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environ Exp Bot 1999; 41: 105–130. [CrossRef] [Google Scholar]
  18. Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM. The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and nonhyperaccumulator metallophytes. J Exp Bot 2002; 53: 2381–2392. [CrossRef] [PubMed] [Google Scholar]
  19. Sharma SS, Schat H, Vooijs R. In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry 1998; 49: 1531–1535. [CrossRef] [PubMed] [Google Scholar]
  20. Sharma SS, Dietz KJ. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 2006; 57(4): 711–726. [CrossRef] [PubMed] [Google Scholar]
  21. Sun R, Zhou Q, Wei S. Cadmium Accumulation in Relation to Organic Acids and Nonprotein Thiols in Leaves of the Recently Found Cd Hyperaccumulator Rorippa globosa and the Cd-accumulating Plant Rorippa islandica. J Plant Growth Regul 2011; 30: 83–91. [CrossRef] [Google Scholar]
  22. Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci 2010; 15 (2): 89–97. [Google Scholar]
  23. Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ. Cadmium tolerance and hyperaccumulation in a new Zn hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 2004; 259: 181–189. [CrossRef] [Google Scholar]
  24. Zengin FK, Munzuroglu O. Effect of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgarit L.) seedlings. Acta Biol Cracov Bot 2005; 47 (2): 157–164. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.