Open Access
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 01007
Number of page(s) 6
Section Probability of floods and storms
Published online 20 October 2016
  1. Bruun J.T. and Tawn J.A., 1998. Comparison of approaches for estimating the probability of coastal flooding. Journal of the Royal Statistical Society: Series C (Applied Statistics), 47(3): 4 [Google Scholar]
  2. Hawkes P.J., Gouldby B.P., Tawn J.A. and Owen M.W., 2002. The joint probability of waves and water levels in coastal engineering design. Journal of Hydraulic Research, 40(3): 241–251 [CrossRef] [Google Scholar]
  3. De Michele C., Salvadori G., Passoni G. and Vezzoli R., 2007. A multivariate model of sea storm using copulas, Coast. Eng. 54 (10), Pgs 734–751. [CrossRef] [Google Scholar]
  4. Salvadori G., Michele C.D., Durante F, 2011 On the return period and design in a multivariate framework Hydrology and Earth System Sciences [Google Scholar]
  5. Corbella S. and Stretch D., 2013. Simulating a multivariate sea storm using Archimedean copulas, Coastal Engineering, 76, Pg. 68–78, June [CrossRef] [Google Scholar]
  6. Serinaldi, 2015 Dismissing Return Periods, Stochastic Environmental Research and Risk Assessment, 29(4), pp 1179–1189.. [Google Scholar]
  7. Heffernan J. E. and Tawn J. A.,2004. A conditional approach for multivariate extreme values. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 66(3), 497–546 [CrossRef] [Google Scholar]
  8. Lamb R. et al., 2010. A new method to assess the risk of local and widespread flooding on rivers and coasts. Journal of Flood Risk Management, 3(4): 323–336. [CrossRef] [Google Scholar]
  9. Wyncoll D. and Gouldby B., 2014 Application of a multivariate extreme value method to flood risk analysis, J. Flood Risk Man. 8(2), 142 [Google Scholar]
  10. Gouldby B, Mendez F, Guanche Y, Rueda A and Minguez R.m 2014 A methodology for deriving extreme nearshore sea conditions for structural design and flood risk analysis, Coast. Eng, 88 [Google Scholar]
  11. Booij N., Ris R.C. and Holthuijsen L.H., 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4): 7649–7666. [CrossRef] [Google Scholar]
  12. O´Hagan A., 2006. Bayesian analysis of computer code outputs: A tutorial. Reliability Engineering & System Safety, 91(11): 1290–1300. [Google Scholar]
  13. Camus P., Mendez F.J. and Medina R., 2011a. A hybrid efficient method to downscale wave climate to coastal areas. Coastal Engineering, 58(9): 851–862. [CrossRef] [Google Scholar]
  14. Camus P., Mendez F.J., Medina R. and Cofiño A.S., 2011b. Analysis of clustering and selection algorithms for the study of multivariate wave climate. Coastal Engineering, 58(6): 453–462. [CrossRef] [Google Scholar]
  15. Goda Y 2000, Random seas and the Design of Maritime Structures, World Scientific Publishing, ISBN 981-02-3256–X [CrossRef] [Google Scholar]
  16. Battjes J. A., and Janssen J.P. F.M. 1978 Energy loss and set-up due to breaking of random waves, Proc. 16th International Conference on Coastal Engineering, p. 569–587, Am. Soc .of Civ. Eng., New York [Google Scholar]
  17. Kingston G., Robinson D., Gouldby B. and Pullen T., 2008. Reliable prediction of wave overtopping volumes using bayesian neural networks. FLOOD risk 2008, Keble College, Oxford, UK. [Google Scholar]
  18. Van Gent M.R.A., Van den Boogaard H.F.P., Pozueta B. & Medina J.R. 2007. Neural network modelling of wave overtopping at coastal structures. Coastal Engineering 54(8): 586–593. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.