Open Access
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 04004
Number of page(s) 12
Section Hazard analysis and modelling
Published online 20 October 2016
  1. Macdonald R.W. (2000). Modelling the mean velocity profile in the urban canopy layer. Bound Layer Meteorol, 97, pp. 25–45. [Google Scholar]
  2. Nepf H. and Vivoni E.R. (2000). Flow structure in depth-limited, vegetated flow. J Geophys Res, 105, pp. 28547–28557 [CrossRef] [Google Scholar]
  3. Jiménez J. (2004). Turbulent flows over rough walls, Annu. Rev. Fluid Mech. 36, pp. 173–196. [CrossRef] [Google Scholar]
  4. Nikora V., McEwan I., McLean S., Coleman S., Pokrajak D. and Walters R. (2007). Doubleaveraging concept for rough-bed open-channel and overland flows: Theoretical background, J. Hydr. Eng. 133(8), pp. 873–883. [Google Scholar]
  5. Florens E., Eiff O. and Moulin F.Y. (2013). Defining the roughness sublayer and its turbulence statistics. Exp. Fluids, 54, 1500. [Google Scholar]
  6. Rouzès M., Moulin F.Y. and Eiff O. (2016). Effect of relative submergence in rough turbulent openchannel flows. To be submitted. [Google Scholar]
  7. Eiff O., Florens E. and Moulin F.Y. (2014). Roughness parameters in shallow open-channel flows. River Flow 2014, pp. 287–292 [Google Scholar]
  8. Poggi D., Porporato A., Ridolfi L., Albertson J. and Katul G. (2004). The effect of vegetation density on canopy sub-layer turbulence. Bound. Layer Meteor., 111, pp. 565–587. [Google Scholar]
  9. Chen, X. and Chiew, Y.M. (2003). Response of velocity and turbulence to sudden change of bed roughness in open-channel flow. Journal of Hydraulic Engineering, 129(1), pp. 35–43. [CrossRef] [Google Scholar]
  10. Dupuis, V. (2016). Experimental investigation of longitudinal roughness transitions in single and compound channel flows. PhD Thesis, Université Claude Bernard Lyon 1, Ecole doctorale MEGA, in preparation. [Google Scholar]
  11. Dupuis, V., Proust, S., Berni, C., Paquier, A., and Thollet, F. (2015). Open-channel flow over longitudinal roughness transition from highlysubmerged to emergent vegetation. E-proceeding of the 36th IAHR World Congress, The Hague, the Netherlands. [Google Scholar]
  12. Dupuis, V., S. Proust, C. Berni, and A. Paquier (2016), Combined effects of bed friction and emergent cylinder drag in open channel flow, accepted for Environmental Fluid Mechanics. [Google Scholar]
  13. Proust, S., J. N. Fernandes, Y. Peltier, J. B. Leal, N. Rivière, and A. H. Cardoso (2013), Turbulent nonuniform flows in straight compound open-channels, Journal of Hydraulic Research, 51(6), 656–667. [Google Scholar]
  14. Rouzès (2015). Etude expérimentale de l’hydrodynamique d’un écoulement turbulent sur fond rugueux en situation naturelle et/ou à faible submersion. PhD Thesis, INPT-Université de Toulouse, 182 pages. [Google Scholar]
  15. Vermaas, D.A., Uijttewaal, W.S.J. and A.J.F. Hoitink (2011). Lateral transfer of streamwise momentum caused by a roughness transition across a shallow channel. Water Resources Research, 47, W02530. [CrossRef] [Google Scholar]
  16. Nepf, H.M. (1999). Drag, Turbulence, and Diffusion in Flow through Emergent Vegetation. Water Resources Research, 35(2), 479–89. [Google Scholar]
  17. Tanino Y., and Nepf, HM. (2008). Laboratory Investigation of Mean Drag in a Random Array of Rigid, Emergent Cylinders. Journal of Hydraulic Engineering, 134(January), 34–41. [Google Scholar]
  18. Herbich, J.B., and Shulits S. (1964). Large Scale Roughness in Open-Channel Flow. Proceedings of the American Society of Civil Engineers. Journal of the Hydraulics Division, 203–30. [Google Scholar]
  19. S. Proust, J. B. Faure, V. Dupuis, C. Berni and A. Paquier (2016). 1D+ model for overbank flows with a transition bed friction – emergent rigid vegetation drag. Accepted for River flow 2016, 8th International Conference on Fluvial Hydraulics, St. Louis, Mo., USA. [Google Scholar]
  20. S. Proust, D. Bousmar, N. Rivière, A. Paquier and Y. Zech (2009). Non-uniform flow in compound channel: a 1D-method for assessing water level and discharge distribution. Water Resources Research, 45(W12411): 1–16. [Google Scholar]
  21. Yen, B. C. (1984). Hydraulics of flood plains: methodology for backwater computation, Report of the Institut für wasserbau / Universität Stuttgart, Wissenschaftlicher Bericht Nr. 84/5. [Google Scholar]
  22. Yen, B. C., Camacho R., Kohane R. and B. Westrich (1985). Significance of flood plains in backwater computation. Proc. 21st IAHR Congress, Melbourne, Australia, 19-23 August 1985, 3: 439–445. [Google Scholar]
  23. Bousmar, D. and Zech Y. (1999). Momentum transfer for practical flow computation. Journal of Hydraulic Engineering, 125(7): 696–706. [CrossRef] [Google Scholar]
  24. Brito, M., Fernandes J. N. and Leal J. B. (2016). Porous media approach for RANS simulation of compound open-channel flows with submerged vegetated floodplains. Submitted to Environmental Fluid Mechanics. [Google Scholar]
  25. Wallin, S. and A. Johansson (2000). A complete explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. Journal of Fluid Mechanics, 403, 89–132. [CrossRef] [MathSciNet] [Google Scholar]
  26. Whitaker, S. (1999). The Method of Volume Averaging. Kluwer Academic Publishers, Dordrecht. [CrossRef] [Google Scholar]
  27. Li, L. and W. Ma (2011). Experimental study on the effective particle diameter of a packed bed with nonspherical particles. Transport in Porous Media, 89, 35–48. [Google Scholar]
  28. Ghisalberti, M. and H. M. Nepf (2004). The limited growth of vegetated shear layers. Water Resources Research, 40, W07502. [CrossRef] [Google Scholar]
  29. Fernandes, J. N., J. B. Leal, and Cardoso A. H. (2014). Improvement of the Lateral Distribution Method based on the mixing layer theory. Advances in Water Resources, 69, 159–167. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.