Open Access
Issue
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 04006
Number of page(s) 11
Section Hazard analysis and modelling
DOI https://doi.org/10.1051/e3sconf/20160704006
Published online 20 October 2016
  1. Moore, R.J., 1985. The probability-distributed principle and runoff production at point and basin scales. Hydrological Sciences Journal, 30, 273–297. [CrossRef]
  2. Moore, R.J., 2007. The PDM rainfall-runoff model. Hydrology and Earth System Sciences, 11, 1, 483–499. [CrossRef]
  3. Nielsen, S.A., Hansen, E., 1973. Numerical simulation of the rainfall-runoff process on a daily basis. Nordic Hydrology, 4, 171–190.
  4. Abbott, M.B., Bathurst, J.C., Cunge, J.A., Oconnell, P.E., Rasmussen, J., 1986a. An Introduction to the European Hydrological System - Système Hydrologique Européen, She. 1. History and Philosophy of A Physically-Based, Distributed Modeling System. Journal of Hydrology, 87, 45–59. [CrossRef]
  5. Abbott, M.B., Bathurst, J.C., Cunge, J.A., Oconnell, P.E., Rasmussen, J., 1986b. An Introduction to the European Hydrological System - Système Hydrologique Européen, She. 2. Structure of A Physically-Based, Distributed Modeling System. Journal of Hydrology, 87, 61–77. [CrossRef]
  6. Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic modeling and assessment part I : Model development. Journal of American Water Research Association, 34, 1, 73–89 [CrossRef]
  7. Beven, K.J., Kirkby, M.J., 1979. A Physically Based Variable Contributing Area Model of Basin Hydrology. Hydrology Sciences Bulletin 24, 43–69. [CrossRef]
  8. Jakeman, A.J., Littlewood, I.G., Whitehead, P.G. 1990. Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. Journal of Hydrology, 117, 275–300. [CrossRef]
  9. Cole, S.J., Robson, A.J., Bell, V.A., Moore, R. J.: Model initialisation, data assimilation and probabilistic flood forecasting for distributed hydrological models, in: Geophysical Research Abstracts, 11, EGU2009-8048-3, 2009.
  10. Cabus, P., 2008. River flow prediction through rainfall–runoff modeling with a probability distributed model (PDM) in Flanders, Belgium. Agricultural Water Management, 95, pp. 859–868 [CrossRef]
  11. Dewelde, J., Verbeke, S., Quintelier, E., Cabus, P., Vermeulen, A., Vansteenkiste, T., De Jongh, I., Cauwenberghs, K., 2014.Real-time flood forecasting in Flanders. 11th International Conference on Hydroinformatics HIC 2014, New York City, USA; Conference proceedings.
  12. Van Steenbergen, N., Willems, P., 2012. Method for testing the accuracy of rainfall– runoff models in predicting peak flow changes due to rainfall changes, in a climate changing context. Journal of Hydrology, 414–415, 425–434.
  13. Van Steenbergen, N., Willems, P., 2014. Quantification of rainfall forecast uncertainty and its impact on flood forecasting. 11th International Conference on Hydroinformatics - HIC 2014, New York City, USA.
  14. Breuer, L., Huisman, J.A., Willems, P., Bormann, H., Bronstert, A., Croke, B.F.W., Frede, H.-G., Gräff, T., Hubrechts, L., Jakeman, A.J., Kite, G., Lanini, J., Leavesley, G., Lettenmaier, D.P., Lindström, G., Seibert, J., Sivapalan, M., Viney, N.R., 2009. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) I: Model intercomparison with current land use. Advances in Water Resources, 32 (2), 129–146. [CrossRef]
  15. Viney, N.R., Bormann, H., Breuer, L., Bronstert, A., Croke, B.F.W., Frede, H., Gräff, T., Hubrechts, L., Huisman, J.A., Jakeman, A.J., Kite, G.W., Lanini, J., Leavesley, G., Lettenmaier, D.P., Lindström, G., Seibert, J., Sivapalan, M., Willems, P., 2009. Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) II: Ensemble combinations and predictions. Advances in Water Resources, 32 (2), 147–158. [CrossRef]
  16. Ludwig, R., May, I., Turcotte, R., Vescovi, L., Braun, M., Cyr, J.-F., Fortin, L.-G, Chaumont, D., Biner, S., Chartier, I., Caya, D., Mauser, W., 2009. The role of hydrological model complexity and uncertainty in climate change impact assessment. Advanced. Geosciences, 21, 63–71. [CrossRef]
  17. Maurer, E.-P., Brekke, L.-D., Pruitt, T., 2010. Contrasting lumped and distributed hydrology models for estimating climate change impacts on California watersheds. Journal of the American Water Resources Association, 46 (5), 1024–1035. [CrossRef]
  18. Van Steenbergen, N., Ronsyn, J., Willems, P., 2012. A non-parametric data-based approach for probabilistic flood forecasting in support of uncertainty communication. Environmental Modelling & Software, 33, 92–105 [CrossRef]
  19. Vansteenkiste, T., Tavakoli, M., Ntegeka, V., De Smedt, F., Batelaan, O., Pereira, F., Willems, P., 2014. Intercomparison of hydrological model structure and calibration approaches in climate scenario impact projections. Journal of Hydrology, 519A, 27, 743–755. [CrossRef]
  20. Werner, M., Cranston, M., Harrison, T., Whitfield, D., Schellekens, J., 2009. Recent developments in operational flood forecasting in England, Wales and Scotland. Meteorololgical Applications, 16, 13–22. [CrossRef]
  21. De Lange, W.J., Prinsen, G.F, Hoogewoud, J.C, Veldhuizen, A.A, Verkaik, J., Oude Essink, G.H.P., van Walsum, P.E.V., Delsam, J.R, Hunink, J.C., Massop, H.Th.L., Kroon, T., 2014. An operational, multi-scale, multi-model system for for consensus based, integrated water management and policy analysis: The Netherlands Hydrological Instrument. Environmental Modelling & Software, 59, 98–108. [CrossRef]
  22. Martens, B., Cabus, P., De Jongh, I., Verhoest, N.E.C., 2013. Merging weather radar observations with ground-based measurements of rainfall using an adaptive multiquadric surface fitting algorithm. Journal of Hydrology, 500, 84–96 [CrossRef]
  23. Karssenberg, D. De Jong, K, Van der Kwast, J., 2007. Modelling landscape dynamics with Python. International Journal of Geographical Information Science, 19, 623–637. [CrossRef]
  24. PCRaster, January 2013. PCRaster internet site. Available online at: http://www.python.org
  25. Willems, P., 2014. Parsimonious rainfall–runoff model construction supported by time series processing and validation of hydrological extremes – Part 1: Step-wise model-structure identification and calibration approach. Journal of Hydrology, 510 (14), 578–590. [CrossRef]
  26. Willems, P., Quan, T.Q, Van den Zegel, B., De Decker, K., Pannemans, B., Gullentops, C. Buitrago, S., Blanckaert, J., Adams, R., 2013. Next Generation Tool for Flexible Hydrological Modelling – concept note. Concept-eindrapport. KU Leuven & IMDC, project L 2012 T 0001 X Perceel 2 Dijle / Vlaamse Milieumaatschappij – Afdeling Operationeel Waterbeheer, maart 2014.
  27. Leavesley, G.H., Restrepo, P.J., Stannard, L G., Frankoski, L.A., Sautins, A.M., 1996. The modular modeling system (MMS) - A modeling framework for multidisciplinary research and operational applications. GIS and environmental modeling: Progress and research issues, Goodchild, M. et al., eds., GIS World Books, Fort Collins, Colorado, 155–158.
  28. Kraft, P., Vache, K.B., Frede, H.-G., Breuer, L., 2011. A hydrological programming language extension for integrated catchment models. Environmental Modelling and Software, 26, 828–830. [CrossRef]
  29. Fenicia, F., Savenije, H.H.G., Matgen, P., Pfister, L., 2008. Understanding catchment behavior through stepwise model concept improvement. Water Resources Research 44, W01402þ [CrossRef]
  30. Duan, Q.Y., Gupta, V.K., Sorooshian, S., 1993. Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76 (3), 501–521. [CrossRef]
  31. Tran, Q.Q., Willems, P., Pannemans, B., Blanckaert, J., Pereira, P., Nossent, J., Cauwenberghs, K., Vansteenkiste, T., 2015. Flexible hydrological modeling - Disaggregation from lumped catchment scale to higher spatial resolutions. Geophysical Research Abstracts 17, EGU2015-6983–1.
  32. Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models, I, A discussion of principles. Journal of Hydrology, 10, 282–290. [CrossRef]
  33. Buytaert, W., Baez, S., Bustamante, M., Dewulf, A., 2012. Web-Based Environmental Simulation: Bridging the Gap between Scientific Modeling and Decision-Making. Environmental science & technology, 46, 1971–1976. [CrossRef] [PubMed]
  34. Alberti, K., de Jong, K., Karssenberg, D., A virtual globe for environmental impact assessment. European Geosciences Union, EGU General Assembly, 2014.
  35. Bröring, A., Maué, P., Janowicz, K., Nüst, D., Malewski, C., 2011. Semantically-Enabled Sensor Plug & Play for the Sensor Web. Sensors, 11 (8), 7568–7605. [CrossRef]
  36. Maué, P., Stasch, C., Athanasopoulos, G., Gerharz, L., 2011. Geospatial Standards for Web-enabled Environmental Models. Internal Journal for Spatial Data Infrastructures Research (IJSDIR), 6.
  37. Wolfs, V., Meert, P., Willems, P., 2015. Modular conceptual modelling approach and software for river hydraulic simulations. Environmental Modelling & Software 71, 60–77. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.