Open Access
Issue
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 04016
Number of page(s) 8
Section Hazard analysis and modelling
DOI https://doi.org/10.1051/e3sconf/20160704016
Published online 20 October 2016
  1. UN (United Nations). 2011, “World Urbanization Prospects: The 2011 Revision Highlights”, New York. [Google Scholar]
  2. Mitchell J., 1999, “Natural disasters in the context of mega-cities”: Mitchell, (eds.), Crucibles of Hazard: Megacities and Disasters in Transition, Brookings Institute, Washington, p.15–55. [Google Scholar]
  3. Hunt A. and Watkiss P., 2010, “Climate change impacts and adaptation in cities: a review of the literature”, Climatic Change, 104(1), p. 13–49. [CrossRef] [Google Scholar]
  4. IPCC (International Panel on Climate Change) (2013). Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA. [Google Scholar]
  5. UN-Habitat (United Nations Human Settlements Programme), 2007, “Enhancing Urban Safety and Security”, Global Report on Human Settlements, Earthscan, London. [Google Scholar]
  6. Dawson R. J., 2011, “Potential pitfalls on the transition to more sustainable cities and how they might be avoided”, Carbon Management, 2(2), p.175–188. [CrossRef] [Google Scholar]
  7. Biesbroek G. R., Swart R. J., Carter T. R., Cowan C., Henrichs T., Mela H., Morecroft M.D., et al., 2010, “Europe adapts to climate change: Comparing National Adaptation Strategies”, Global Environmental Change, 20(3): 440–50. [CrossRef] [Google Scholar]
  8. Newman P. and Kenworthy J.R., 1989, Cities and automobile dependence: a sourcebook. Gower, Aldershot. [Google Scholar]
  9. Williams K., Burton E., and Jenks M., 2000, “Achieving Sustainable Urban Form: Conclusions”, in Williams K, Burton E., Jenks M., (ed.), Achieving Sustainable Urban Form, Routledge, London, p. 347–55. [Google Scholar]
  10. Melia S., Parkhurst G., and Barton H., 2012, “The Paradox of Intensification”, Journal of Transport Policy, 18(1), p. 46–52. [CrossRef] [Google Scholar]
  11. Newton P.W., Newman P., Manins P.C.L., Simpson R. and Smith N., 1997, Reshaping cities for a more sustainable future: exploring the link between urban form, air quality, energy and greenhouse gas emissions, Australian Housing and Urban Research Institute, Melbourne. [Google Scholar]
  12. Dawson R. J. (2007). Re-engineering cities: A framework for adaptation to global change. Philosophical Transactions of the Royal Society Special issue on Visions of the Future, 365(1861), 3085-3098. doi: 10.1098/rsta.2007.0008 [CrossRef] [Google Scholar]
  13. Prasad T. D., and Park N. S., 2004, Multiobjective genetic algorithms for design of water distribution networks”, J. Water Resour. Plan. Manage., 130(1), p. 73–82. [CrossRef] [Google Scholar]
  14. Aerts J. and Heuvelink G., 2002, “Using simulated annealing for resource allocation”, International Journal of Geographic Information Science, 16(6), p. 517–87. [CrossRef] [Google Scholar]
  15. Vamvakeridou-Lyroudia L. S., Walters G. A., and Savic D. A., 2005, “Fuzzy Multiobjective Optimization of Water Distribution”, Journal of Water Resources Planning and Management, 131(6), p. 467–76. [CrossRef] [Google Scholar]
  16. Sidiropoulos, E. and D. Fotakis, 2009, “Cell-based genetic algorithm and simulated annealing for spatial groundwater allocation”, WSEAS Transactions on Environment and Development, 5(4), p. 351–360. [Google Scholar]
  17. Ligmann-zielinska A., Church R., and Jankowski P., 2005, “Sustainable urban land use allocation with spatial optimization” in Conference Proceedings. The 8th ICA Workshop on Generalisation and Multiple Representation, p. 1–18. [Google Scholar]
  18. Shimamoto H., Murayama N., Fujiwara A. and Zhang J., 2010, “Evaluation of Bus Network using a Transit Network Optimisation - Case Study on Hiroshima City Bus Network”, 12th World Conference for Transportation Research, p. 1–24. [Google Scholar]
  19. Kirkpatrick S., Gelatt C.D., and Vecchi M.P., 1983, “Optimization by simulated annealing”, Science, 220(4598), p. 671–80. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. Lind T., 2000, “Strategic forestry planning – evaluation of variable spatial aggregations and forest landscapes”, Ph.D. thesis, Acta Universitatis Acriculturae Sueciae Silvestria, 149(28). [Google Scholar]
  21. Caparros-Midwood D, Barr S, Dawson RJ (2015) Optimized Spatial Planning to meet Urban Sustainability Objectives, Computers, Environment & Urban Simulation, 54:154–164. [Google Scholar]
  22. Deb K., 2001, Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons Ltd, Chichester. [Google Scholar]
  23. Goldberg D. E., 1989, Genetic Algorithms for Search, Optimization and Machine Learning, Addison-Wesley, Reading. [Google Scholar]
  24. Mishra K.K. and Harit S., 2010, “A Fast Algorithm for Finding the Non Dominated Set in Multi objective Optimization”, International Journal of Computer Applications, 1(25): 35–39. [Google Scholar]
  25. ONS (Office of National Statistics), 2012, 2011 Census: Population Estimates for the United Kingdom, London. [Google Scholar]
  26. Middlesbrough Council, 2012, Local Development Framework Core Strategy and Regeneration Development Plan Document: Housing Review Issues and Options Report, Middlesbrough, UK. [Google Scholar]
  27. Middlesbrough Council, 2013, Local Development Framework Housing Review Preferred Options: Sustainability Appraisal, Middlesbrough, UK. [Google Scholar]
  28. DCLG (Department for Communities and Local Government), 2003, The North East of England Plan Regional Spatial Strategy to 2021, The Stationery Office, London. [Google Scholar]
  29. Melia S., Parkhurst G., and Barton H., 2012, “The Paradox of Intensification”, Journal of Transport Policy, 18(1), p. 46–52. [CrossRef] [Google Scholar]
  30. Carter J. G. (2011). Climate change adaptation in European cities. Current Opinion in Environmental Sustainability, 3(3), 193–198. doi:10.1016/j.cosust.2010.12.015 [CrossRef] [Google Scholar]
  31. DCLG (Department for Communities and Local Government) (2008). The North East of England Plan Regional Spatial Strategy to 2021. The Stationery Office, London. Retrieved from http://www.sunderland.gov.uk/CHttpHandler.ashx?id=1367&p=0 [Google Scholar]
  32. GLA (Greater London Authority) (2011). The London Plan: Spatial Development Plan. GLA: London. [Google Scholar]
  33. American Planning Association. (2000). Policy Guide on Planning for Sustainability. New York. Retrieved from https://www.planning.org/policy/guides/pdf/sustainability.pdf [Google Scholar]
  34. DCLG (2012). National Planning Policy Framework. Eland House: London. Retrieved from https://www.gov.uk/government/uploads/system/uploads/a ttachment_data/file/6077/2116950.pdf [Google Scholar]
  35. Jenkins G., Murphy J., Sexton D., J.Lowe, Jones P. and Kilsby C., 2009, UK Climate Projections: Briefing report, Exeter, UK. [Google Scholar]
  36. Burton A, Glenis V., Jones M.R. and Kilsby C.G., 2013, “Models of daily rainfall cross-correlation for the United Kingdom”, Environmental Modelling and Software, (accepted for publication). [Google Scholar]
  37. Kilsby C.G., Jones P.D., Burton A., Ford A., Fowler H.J., C.Harpham, James P., Smith A. and Wilby R.L., 2007, “A daily weather generator for use in climate change studies”, Environmental Modelling and Software, 22(12): 1705–19. [Google Scholar]
  38. Jones P.D., Kilsby C.G., Harpham C., Glenis V. and Burton A., 2009, “UK Climate Projections science report: Projections of future daily climate for the UK from the Weather Generator”, UK Climate Impacts Programme, London, UK. [Google Scholar]
  39. Ewing R. & Cervero R. (2010). Travel and the Built Environment. Journal of the American Planning Association, 76 (3), 265–94. [CrossRef] [Google Scholar]
  40. ONS (Office of National Statistics) (2012). 2011 Census: Population Estimates for the United Kingdom. London. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.