Open Access
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 17007
Number of page(s) 8
Section Disaster management and recovery
Published online 20 October 2016
  1. Brenden J., Hochrainer-Stigler S., Luc Feyen L., Aerts J., Mechler R., Wouter Botzen W. J., Laurens M. Bouwer L. M., Pflug G., Rojas R., and Philip J. Ward P.J. (2014). Increasing stress on disaster-risk finance due to large floods. Nature Climate Change 4, pp. 264–268. doi:10.1038/nclimate2124. [CrossRef] [Google Scholar]
  2. Chendeş V., Bălteanu D., Micu D., Sima M., Ion B., Grigorescu I., Persu M., Dragotă C. (2015). A database design of major past flood events in Romania from national and international inventories, Air and Water Components of the Environment (Cluj-Napoca), pp. 25–32. [Google Scholar]
  3. Commission of the European Communities. (2007). Addressing the challenge of water scarcity and droughts in the European Union. COM, 414 p. [Google Scholar]
  4. Croitoru A.E. and Minea. I. (2015). The impact of climate changes on rivers discharge in Eastern Romania. Theoretical and Applied Climatology, 120: pp. 563–573. [CrossRef] [Google Scholar]
  5. Busuioc A., Dobrinescu A., Birsan M,Dumitrescu V., A. and A. Orzan. (2015). Spatial and temporal variability of climate extremes in Romania and associated large-scale mechanisms. International Journal of Climatology, 35: pp. 1278–1300. [CrossRef] [Google Scholar]
  6. CEOS, 2015. Satellite Earth Observations in Support of Disaster Risk Reduction. The CEOS Earth Observation Handbook, Special 2015 Edition for the 3rd UN World Conference on Disaster Risk Reduction. [Google Scholar]
  7. Negula D, Crăciunescu V, Vîrsta A, Badea A, Moise C, Manea R, Călin M, Irimescu A. (2013). Downstream Copernicus Service for Emergency Management in Romania. Proceedings of 13th SGEM GeoConference on Informatics, Geoinformatics And Remote Sensing, vol. 1, Albena, Bulgaria, pp. 403–410. [Google Scholar]
  8. Duong N.D., Water Body Extraction from Multi Spectral Image by Spectral Pattern Analysis. (2012). Intern. Archives of the Photogramm., Remote Sens. and Spatial Information Sciences, vol. XXXIX-B8, XXII ISPRS Congress, Melbourne, Australia. [Google Scholar]
  9. Lu D.; Weng Q. (2007). A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens., 28, pp. 823–870. [CrossRef] [Google Scholar]
  10. Richards J.A., A Remote Sensing Digital Image Analysis: An Introduction. (2012). Springer Science & Business Media, 9, pp. 494. [Google Scholar]
  11. Frazier P.S.; Page K.J. (2000). Water body detection and delineation with Landsat TM data. Photogramm. Eng. Remote Sens., 66, pp. 1461–1468. [Google Scholar]
  12. Amarnath G. An algorithm for rapid flood inundation mapping from optical data using a reflectance differencing technique. (2014). Journal of Flood Risk Management, vol. 7, issue 3, pp. 239–250. [CrossRef] [Google Scholar]
  13. Boschetti M., Nutini F., Manfron G., Alessandro P., Brivio P. and Andrew Nelson A. (2014). Comparative Analysis of Normalised Difference Spectral Indices Derived from MODIS for Detecting Surface Water in Flooded Rice Cropping Systems. PLoS One. 2014; 9(2): e88741. Published online 2014 Feb 20. doi: 10.1371/journal.pone.0088741. [Google Scholar]
  14. Xu H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27: 3025–3033 doi:10.1080/01431160600589179. [CrossRef] [Google Scholar]
  15. McFeeters S. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. (1996). Int. J. Remote Sens., 17, pp. 1425–1432. [CrossRef] [Google Scholar]
  16. Xu H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. (2006). Int. J. Remote Sens., 27, 3025–3033. [CrossRef] [Google Scholar]
  17. Schubert A., Jehle M., Small D. and Meier E. (2010). Influence of atmospheric path delay on the absolute geolocation accuracy of TerraSAR-X highresolution products. IEEE Trans. Geosci. Remote Sens., vol. 48, no. 2, pp. 751–758. [CrossRef] [Google Scholar]
  18. Pulvirenti L. Chini M, Pierdicci N., Guerriero L. and Ferrazzoli P. (2011). Flood monitoring using multi-temporal COSMO-SkyMed data: Image segmentation and signature interpretation. Remote Sens. Environ., vol. 115, no. 4, pp. 990–1002. [CrossRef] [Google Scholar]
  19. Crăciunescu V, Flueraru C, Anderson E, Nedelcu I, Stăncălie G, Irimescu A. (2009). Mapping and monitoring the 2005-2008 floods in Romania, using remote sensing techniques. Complexul Muzeal Bistrita Nasaud “Studii si Cercetari”: Geology – Geography, 14, pp. 107–122. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.