Open Access
Issue
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
Article Number 02002
Number of page(s) 5
Section Keynote Lectures
DOI https://doi.org/10.1051/e3sconf/20160902002
Published online 12 September 2016
  1. M. Tuller, D. Or, Retention of water in soil and the soil water characteristic curve. Encyclopedia of Soils in the Environment, 4, 278–289 (2004). [Google Scholar]
  2. D. B. Jaynes, Comparison of soil-water hysteresis models. Journal of Hydrology, 75(1), 287–299 (1984). [Google Scholar]
  3. S. J. Wheeler, R. S. Sharma, M. S. R. Buisson, Coupling of hydraulic hysteresis and stress–strain behaviour in unsaturated soils. Géotechnique, 53(1), 41–54 (2003). [CrossRef] [Google Scholar]
  4. R. Tamagnini, An extended Cam-clay model for unsaturated soils with hydraulic hysteresis. Géotechnique, 54(3), 223–228 (2004). [CrossRef] [Google Scholar]
  5. A. Khosravi, J.S. McCartney, Impact of hydraulic hysteresis on the small-strain shear modulus of low plasticity soils. Journal of Geotechnical and Geoenvironmental Engineering, 138(11), 1326–1333 (2012). [CrossRef] [Google Scholar]
  6. C. Yang, D. Sheng, J.P. Carter, Effect of hydraulic hysteresis on seepage analysis for unsaturated soils. Computers and Geotechnics, 41, 36–56. ISO 690, (2012). [Google Scholar]
  7. E. Nikooee, G. Habibagahi, S.M Hassanizadeh, A. Ghahramani, Effective stress in unsaturated soils: A thermodynamic approach based on the interfacial energy and hydromechanical coupling. Transport in porous media,96 (2), 369–396 (2013). [CrossRef] [Google Scholar]
  8. N. K. Karadimitriou, Two-phase flow experimental studies in micro-models, PhD Dissertation, Depart of Earth Sciences, Utrecht University, 145 (2013). [Google Scholar]
  9. S.M. Hassanizadeh, W.G. Gray, Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Advances in water resources, 13(4), 169–186 (1990). [CrossRef] [Google Scholar]
  10. W. G. Gray, S.M. Hassanizadeh, Thermodynamic basis of capillary pressure in porous media. Water Resources Research, 29(10), 3389–3405 (1993). [CrossRef] [Google Scholar]
  11. H. Kim, P.S.C. Rao, M. D. Annable, Gaseous tracer technique for estimating air–water interfacial areas and interface mobility. Soil Science Society of America Journal, 63(6), 1554–1560 (1999). [CrossRef] [Google Scholar]
  12. M. L. Brusseau, S. Peng, G. Schnaar, A. Murao, Measuring air-water interfacial areas with X-ray microtomography and interfacial partitioning tracer tests. Environmental science & technology, 41(6), 1956–1961 (2007). [CrossRef] [PubMed] [Google Scholar]
  13. M. L. Porter, M. G. Schaap, D. Wildenschild, Lattice-Boltzmann simulations of the capillary pressure–saturation–interfacial area relationship for porous media. Advances in Water Resources, 32(11), 1632–1640 (2009). [CrossRef] [Google Scholar]
  14. S. A. Galindo-Torres, A. Scheuermann, L. Li, Boundary effects on the Soil Water Characteristic Curves obtained from lattice Boltzmann simulations. Computers and Geotechnics, 71, 136–146 (2016). [CrossRef] [Google Scholar]
  15. R. Sivanesapillai, N. Falkner, A. Hartmaier, H. Steeb. A CSF-SPH method for simulating drainage and imbibition at pore-scale resolution while tracking interfacial areas. Advances in Water Resources (2015). [PubMed] [Google Scholar]
  16. V. Joekar-Niasar, S. M. Hassanizadeh. Pore-network modeling of wicking: a two-phase flow approach. Wicking in Porous Materials: Traditional and Modern Modeling Approaches, 237–262 (2012). [CrossRef] [Google Scholar]
  17. V. Šmilauer, Cohesive particle model using the discrete element method on the yade platform (Doctoral dissertation, Université de Grenoble; and Czech Technical University in Prague (2010). [Google Scholar]
  18. K.A. Culligan, D. Wildenschild, B. Christensen, W. G. Gray, M.L. Rivers, A. F. Tompson, Interfacial area measurements for unsaturated flow through a porous medium. Water Resources Research, 40(12) (2004). [CrossRef] [Google Scholar]
  19. Y. C. Chung, J. Y. Ooi, A study of influence of gravity on bulk behaviour of particulate solid. Particuology, 6(6), 467–474 (2008). [CrossRef] [Google Scholar]
  20. H. Dong, Micro-CT imaging and pore network extraction (Doctoral dissertation, Department of Earth Science and Engineering, Imperial College London) (2008). [Google Scholar]
  21. B. Chareyre, A. Cortis, E. Catalano, E. Barthélemy, Pore-scale modeling of viscous flow and induced forces in dense sphere packings. Transport in porous media, 94(2), 595–615 (2012). [CrossRef] [Google Scholar]
  22. T. Sweijen, E. Nikooee, S. Majid Hassanizadeh, B. Chareyre, The effects of swelling and porosity change on capillarity: DEM coupled with a pore-unit assembly method, Transport in Porous Media (in press). [Google Scholar]
  23. C. Yuan, B. Chareyre, F. Darve, Pore-scale simulations of drainage in granular materials: finite size effects and the representative elementary volume. Advances in Water Resources (2015), doi: 10.1016/j.advwatres.2015.11.018. [PubMed] [Google Scholar]
  24. M. Prodanovic, S.L. Bryant. A level set method for determining critical curvatures for drainage and imbibition. J Colloid Interface Sc., 304(2), 442–58 (2006). [CrossRef] [Google Scholar]
  25. R.P. Mayer, R.A. Stowe. Mercury porosimetry breakthrough pressure for penetration between packed spheres. J Colloid Sci. 20(8), 893–911 (1965). [CrossRef] [Google Scholar]
  26. H. M. Princen, Capillary phenomena in assemblies of parallel cylinders: I. Capillary rise between two cylinders. J Colloid Interface Science, 30(1), 69–75 (1969). [CrossRef] [Google Scholar]
  27. G. R. Jerauld, S.J. Salter, The effect of pore-structure on hysteresis in relative permeability and capillary pressure: pore-level modeling. Transport in Porous Media, 5(2), 103–151 (1990). [CrossRef] [Google Scholar]
  28. A. MacKay, To find the largest sphere which can be inscribed between four others. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 29(3), 308–309 (1973). [CrossRef] [Google Scholar]
  29. D. Michelucci, S. Foufou, Using cayley-menger determinants for geometric constraint solving. Paper presented at the Proceedings of the Ninth ACM Symposium on Solid Modeling and Applications, 285–290 (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.