Open Access
Issue
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
Article Number 04003
Number of page(s) 8
Section Invited Lectures
DOI https://doi.org/10.1051/e3sconf/20160904003
Published online 12 September 2016
  1. MS Diederichs. Rock Fracture and Collapse Under Low Confinement Conditions. Rock Mech Rock Eng 36(5):339–81 (2003). [CrossRef]
  2. CF Tsang, F Bernier, C. Davies. Geohydromechanical processes in the Excavation Damaged Zone in crystalline rock, rock salt, and indurated and plastic clays - in the context of radioactive waste disposal. Int J Rock Mech Min Sci 42(1):109–25 (2005). [CrossRef]
  3. Andra. Dossier 2005 Argile. Synthesis: Evaluation of the feasibility of a geological repository in an argillaceous formation, Meuse/Haute Marne site. Tech. Rep.; Paris, France; (2005).
  4. R Plassart, R Fernandes, A Giraud, D Hoxha, F Laigle. Hydromechanical modelling of an excavation in an underground research laboratory with an elastoviscoplastic behaviour law and regularization by second gradient of dilation. Int J Rock Mech Min Sci 58:23–33 (2013).
  5. Y Jia, HB Bian, G Duveau, K Su, JF Shao. Hydromechanical modelling of shaft excavation in Meuse/Haute-Marne laboratory. Phys Chem Earth 33:S422–35 (2008). [CrossRef]
  6. S Levasseur, F Collin, R Charlier, D Kondo. A micro-macro approach of permeability evolution in rocks excavation damaged zones. Comput Geotech 49:245–52 (2013). [CrossRef]
  7. R Charlier, F Collin, B Pardoen, J Talandier, JP Radu, P Gerard. An unsaturated hydro-mechanical modelling of two in-situ experiments in Callovo-Oxfordian argillite. Eng Geol 165:46–63 (2013). [CrossRef]
  8. B Pardoen, S Levasseur, F Collin. Using Local Second Gradient Model and Shear Strain Localisation to Model the Excavation Damaged Zone in Unsaturated Claystone. Rock Mech Rock Eng 48(2):691–714. doi: 10.1007/s00603-014-0580-2 (2015). [CrossRef]
  9. F Collin, XL Li, JP Radu, R Charlier. Thermo-hydro-mechanical coupling in clay barriers. Engineering Geology 64:179–193 (2002). [CrossRef]
  10. B. Pardoen, J. Talandier, F. Collin. Permeability evolution and water transfer in the excavation damaged zone of a ventilated gallery. Int. J. Rock Mech. Min. Sci., under review (2016)
  11. P Gerard, R Charlier, R Chambon, F Collin. Influence of evaporation and seepage on the convergence of a ventilated cavity. Water Resour Res 44(5):1–16 (2008). [CrossRef]
  12. TA Ghezzehei, RC Trautz, S Finsterle, PJ Cook, CF Ahlers. Modeling coupled evaporation and seepage in ventilated cavities. Vadose Zone J 3(3):806–18 (2004). [CrossRef]
  13. G. Armand, A. Noiret, J. Zghondi, D.M. Seyedi. Short- and long-term behaviors of drifts in the Callovo-Oxfordian claystone at the Meuse/Haute-Marne Underground Research Laboratory. Journal of Rock Mechanics and Geotechnical Engineering Volume 5, Issue 3, June 2013, Pages 221–230 [CrossRef]
  14. J Desrues. Hydro-mechanical coupling and strain localization in saturated porous media. Rev Eur Génie Civ 9(5–6):619–34 (2005).
  15. R Chambon, D Caillerie, NE Hassan. One-dimensional localisation studied with a second grade model. Eur J Mech A-Solid 17(4):637–56 (1998). [CrossRef]
  16. F Collin, R Chambon, R Charlier. A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models. Int J Numer Meth Engng 65(11):1749–72 (2006). [CrossRef]
  17. E Cosserat, F Cosserat. Théorie des Corps Déformables. Paris: Hermann (1909).
  18. RD Mindlin. Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1:417–38 (1965). [CrossRef]
  19. P Germain. The method of virtual power in continuum mechanics. Part 2 Microstructure. SIAM J. Appl. Math. 25, 556–575 (1973). [CrossRef]
  20. RW Lewis, BA. Schrefler The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Wiley: New York (2000)
  21. MA Biot. General theory for three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941). [CrossRef]
  22. B. Pardoen, D.M. Seyedi, F. Collin Shear banding modelling in cross-anisotropic rocks International Journal of Solids and Structures 72:63–87 (2015) [CrossRef]
  23. J Graham, GT Houlsby. Anisotropic elasticity of a natural clay. Géotechnique 33:165–180 (1983). [CrossRef]
  24. AEH Love. A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press (1927).
  25. B Amadei. Rock anisotropy and the theory of stress measurements. Lecture Notes in Engineering Series, vol. 2. Springer-Verlag, New York (1983). [CrossRef]
  26. AHD Cheng. Material coefficients of anisotropic poroelasticity. Int. J. Rock Mech. Min. Sci. 34:199–205 (1997) [CrossRef]
  27. G Duveau, JF Shao, JP Henry. Assessment of some failure criteria for strongly anisotropic materials. Mech. Cohes-Frict Mat. 3:1–26 (1998). [CrossRef]
  28. S Pietruszczak, Z Mroz. On failure criteria for anisotropic cohesive-frictional materials. Int. J. Numer. Anal. Methods Geomech. 25:509–524 (2001). [CrossRef]
  29. S Pietruszczak, D Lydzba, JF Shao. Modelling of inherent anisotropy in sedimentary rocks. Int. J. Solids Struct. 39:637–648 (2002) [CrossRef]
  30. M Panet, A Guenot. Analysis of convergence behind the face of a tunnel. In: Proceedings of the 3rd International Symposium : Tunnelling 82. Brighton: 1065 Institution of Mining and Metallurgy; 197–204 (1982).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.