Open Access
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
Article Number 08013
Number of page(s) 5
Section Numerical Modelling
Published online 12 September 2016
  1. Zienkiewicz OC, Xie YM, Schrefler BA, Ledesma A, Biĉaniĉ N. Static and dynamic behaviour of soils: a rational approach to quantitative solutions. II. Semi-saturated problems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1990; 429: 311–321. [Google Scholar]
  2. Meroi EA, Schrefler BA, Zienkiewicz OC. Large strain static and dynamic semisaturated soil behaviour. International Journal for Numerical and Analytical Methods in Geomechanics 1995; 19: 81–106. [CrossRef] [Google Scholar]
  3. Schrefler BA, Scotta R. A fully coupled dynamic model for two-phase fluid flow in deformable porous media. Computer Methods in Applied Mechanics and Engineering 2001; 190: 3223–3246. [CrossRef] [Google Scholar]
  4. Shahbodagh Khan B. Large deformation dynamic analysis method for partially saturated elasto-viscoplastic soils, PhD dissertation, Kyoto University, 2011. [Google Scholar]
  5. Uzuoka R, Borja RI. Dynamics of unsaturated poroelastic solids at finite strain. International Journal for Numerical and Analytical Methods in Geomechanics 2012; 36: 1535–1573. [CrossRef] [Google Scholar]
  6. Shahbodagh B, Esgandani G, Khalili N. Large deformation dynamic analysis of unsaturated soils. The 6th International Conference on Unsaturated Soils, UNSAT 2014, Sydney, 2014; 755–760. [Google Scholar]
  7. Shahbodagh B, Khalili N. A u-p formulation for fully coupled dynamic analysis of flow and deformation in unsaturated soils. The 2nd Australasian Conference on Computational Mechanics, Brisbane2015. [Google Scholar]
  8. Muraleetharan KK, Wei C. Dynamic behaviour of unsaturated porous media: governing equations using the Theory of Mixtures with Interfaces (TMI). International Journal for Numerical and Analytical Methods in Geomechanics 1999; 23: 1579–1608. [Google Scholar]
  9. Ravichandran N, Muraleetharan KK. Dynamics of unsaturated soils using various finite element formulations. International Journal for Numerical and Analytical Methods in Geomechanics 2009; 33: 611–631. [Google Scholar]
  10. Zerhouni MI. Application des réseaux de Petri continus à l’analyse dynamique des systèmes de production. Thèse de Doctorat de l’INP Grenoble, France; 1991. [Google Scholar]
  11. Khalili N, Habte MA, Zargarbashi S, A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hystereses, Computers and Geotechnics 2008; 35(6): 872–889. [CrossRef] [Google Scholar]
  12. Khalili N, Zargarbashi S. Influence of hydraulic hysteresis on effective stress in unsaturated soils. Geotechnique 2010; 60(9): 729–739. [CrossRef] [Google Scholar]
  13. Bishop A.W. 1959. The principle of effective stress. Teknisk Ukeblad;106(39): 859–863. [Google Scholar]
  14. Khalili N, and Khabbaz MH. A unique relationship for shear strength determination of unsaturated soils, Geotechnique 1998; 48(5): 681–688. [Google Scholar]
  15. Khalili N., Geiser F, Blight G. Effective Stress in Unsaturated Soils: Review with New Evidence. International Journal of Geomechanics 2004; 4(2): 115–126. [CrossRef] [Google Scholar]
  16. Brooks RH, Corey AT. Hydraulic properties of porous media: Hydrology Papers. Colorado State University, Colorado, 1964. [Google Scholar]
  17. Oka F, Kimoto S. Computational modeling of multiphase geomaterials. CRC press, Taylor & Francis group, Boca Raton, London and New York, 2012. [CrossRef] [Google Scholar]
  18. Kimoto S, Shahbodagh Khan B, Mirjalili M, Oka F. A cyclic elasto-viscoplastic constitutive model for clay considering the nonlinear kinematic hardening rules and the structural degradation, International Journal of Geomechanics 2013; 15(5), A4014005. [CrossRef] [Google Scholar]
  19. Shahbodagh Khan B., Mirjalili M., Kimoto S. and Oka F. 2013. Dynamic analysis of strain localization in water-saturated clay using a cyclic elasto-viscoplastic model, International Journal for Numerical and Analytical Methods in Geomechanics 2014; 38(8), 771–793. [CrossRef] [Google Scholar]
  20. Simon BR, Zienkiewicz OC, Paul DK. An analytical solution for the transient response of saturated porous elastic solids. International Journal for Numerical and Analytical Methods in Geomechanics 1984; 8: 381–398. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.