Open Access
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
Article Number 18003
Number of page(s) 6
Section Nuclear Waste Disposals
Published online 12 September 2016
  1. Brooks, R.H., Corey, A.T., 1964. Hydraulic properties of porous media Colorado State Univ. Hydrol. Paper, no.3. [Google Scholar]
  2. Chen, B., Qian, L.X., Ye, W.M., Cui, Y.J., Wang, J. 2006. Soil-water characteristic curves of Gaomiaozi Bentonite. Chinese Journal of Rock Mechanics and Engineering. 21:1054–1058. [Google Scholar]
  3. Constantz, J., Murphy, F. 1991. The temperature dependence of ponded infiltration under isothermal conditions. J Hydrol 122, 119–128. [CrossRef] [Google Scholar]
  4. Cui, Y.J., Tang, A.M., Loiseau, C., Delage, P. 2008. Determining the unsaturated hydraulic conductivity of a compacted sand-bentonite mixture under constant-volume and free-swell conditions. Physics and Chemistry of the Earth 33, 462–471. [Google Scholar]
  5. Delage, P., Sultan, N., Cui, Y.J. 2000. On the thermal consolidation of Boom clay. Can Geotech J 37 (2), 343–354. [Google Scholar]
  6. Dixon, D.A., Cheung, S.C.H., Gray, M.N., Davidson, B.C. 1987. The hydraulic conductivity of dense clay soils. Proceedings of the 40th Canadian Geotechnical Conference, Regina, Saskachewan – Canada, pp. 389–396. [Google Scholar]
  7. Duley, F.L., Domingo, C.E. 1943. Effect of wáter temperatura on rate of infiltration. Soil Sci Soc proc 31, 129–131. [Google Scholar]
  8. Fredlund, D.G., Xing, A. 1994. Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, Volume 31, 521–532. [CrossRef] [Google Scholar]
  9. Hopmans, J., Dane, J. 1986. Temperature dependence of soil hydraulic properties. Soil Sci Soc Am J 50, 4–9. [CrossRef] [Google Scholar]
  10. Jacinto, A.C., Villar, M.V., Gómez-Espinab, R., Ledesma, A. 2009. Adaptation of van Genuchten expression to the effects of temperature and density for compacted bentonites. Applied Clay Science 42, 575–582. [Google Scholar]
  11. Komine, H. 2004. Simplified evaluation on hydraulic conductivities of sand-bentonite mixture backfill. Applied Clay Science 26 (1-4), 13–19. [CrossRef] [Google Scholar]
  12. Leij, F.J., Russell, W.B., Lesch, S.M. 1997. Closed-form expressions for water retention and conductivity data. Ground Water 35, 848–858. [CrossRef] [Google Scholar]
  13. Liu, Y.M., Xu, G.Q., Liu, S.F. 2001. Study on the Basic Property of Gaomiaozi Bentonite, Inner Mongolia. China Nuclear Industry Audio and Visual Publishing House, Beijing, 1–20 (in Chinese). [Google Scholar]
  14. Liu, Y.M., Wen, Z.J. 2003. An investigation of the physical properties of clayey materials used in nuclear waste disposal at great depth. Mineral rocks 23 (4), 42–45 (in Chinese). [Google Scholar]
  15. Nachabe, H.M. 1995. Estimating hydraulic conductivity for models of Soils with Macro-pores. Journal of Irrigation and Drainage Engineering 121 (1), 95–102. [CrossRef] [Google Scholar]
  16. Niu, W.J. 2008. Study on unsaturated permeability of densely compacted bentonite under free swelling conditions. Ph.D-thesis, Tongji University, Shanghai (in Chinese). [Google Scholar]
  17. Pusch, R., Prikryl, R., Weishauptová, Z, Liu, X. D., Knutsson, S. 2012. Role of clay micro-structure in expandable buffer clay. Journal of Purity, Utility Reaction and Environment Vol.1 No.6, 297–322. [Google Scholar]
  18. Pusch, R., Yong, R. 2003. Water saturation and retention of hydrophilic clay buffer—micro structural aspects. Applied Clay Sci 23, 61–68 [Google Scholar]
  19. Pusch, R., Yong, R.N., Nakano, M., 2010. Stiffening of smectite buffer clay by hydrothermal effects. Engineering Geology, Vol.116. pp. 21–31 [CrossRef] [Google Scholar]
  20. Sun, W.J., Wei, Z.F., Sun, D.A., Liu, S.Q., Fatahi, B., Wang, X.Q., 2015. Evaluation of the swelling characteristics of bentonite-sand mixtures. Engineering Geology, 199. 1–11. [CrossRef] [Google Scholar]
  21. Sánchez, M. 2004. Thermo-hydro-mechanical coupled analysis in low permeability media. The Polytechnic University of Catalunya, Barcelona. [Google Scholar]
  22. Tang, A.M.,Cui, Y.J. 2005. Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay. Can. Geotech. J. 42:1–10. [Google Scholar]
  23. Villar, M.V. 2000. Caracterización termo-hydro-mecánica de una bentonita de Cabo de Gata: Ph.D. Thesis. Universidad Complutense de Madrid. Madrid (in Spanish). [Google Scholar]
  24. Villar, M.V. 2002. Thermo-hydro-mechanical characterization of a bentonite from Cabo de Gata. A study applied to the use of bentonite as sealing material in high level radioactive waste repositories. Publicación Técnica ENRESA, Madrid, Spain. [Google Scholar]
  25. Villar, M.V., Lloret, A. 2004. Influence of temperature on the hydromechanical behaviour of a compacted bentonite. Appl Clay Sci 26: 337–350 [Google Scholar]
  26. Villar, M.V.; Romero, E. & Lloret, A. 2005. Thermo-mechanical and geochemical effects on the permeability of high-density clays. In: ALONSO, E.E. & LEDESMA, A. (eds.): Advances in understanding engineered clay barriers. A.A. Balkema Publishers, Leiden. 177–191. ISBN 04-1536-544-9. [Google Scholar]
  27. Van Genuchten, M. Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. 44, 892–898. [Google Scholar]
  28. Wan, M, Ye, WM, Chen, YG, Cui, YJ, Wang, J. 2015. Influence of temperature on the water retention properties of compacted GMZ01 bentonite. Environmental Earth Sciences. 73(8): 4053–4061. [CrossRef] [Google Scholar]
  29. Wang, J., Sui, R., Chen, W., Guo, Y.H., Jin, Y.X., Wen, Z.J., Liu, Y.M. 2006. Deep geological disposal of high-level radioactive wastes in China. Chinese Journal of Rock Mechanics and Engineering, 25 (4), 649–658. [Google Scholar]
  30. Wen, Z.J. 2006. Physical property of China’s buffer material for high level radioactive waste repositories. Chinese Journal of Rock Mechanics and Engineering 25, 794–800 (in Chinese). [Google Scholar]
  31. Ye, W.M., Cui, Y.J., Qian, L.X., Chen, B. 2009a. An experimental study of the water transfer through confined compacted GMZ bentonite. Engineering Geology, Volume 108, 169–176. [Google Scholar]
  32. Ye, W.M., Wan, M., Chen, B., Chen, Y.G., Cui, Y.J., Wang, J. 2009b. Effect of temperature on soil-water characteristics and hysteresis of compacted Gaomiaozi bentonite. J of Central South Univ of Tech 16 (5), 821–826. [Google Scholar]
  33. Ye, W.M., Chen, Y.G., Chen, B., Wang, Q., Wang, J. 2010. Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite. Engineering Geology, Volume 116, Issues 1-2, Pages 12–20. [CrossRef] [Google Scholar]
  34. Ye, W.M., Wan, M., Chen, B., Chen, Y.G., Cui, Y.J., Wang, J. 2012. Temperature effects on the unsaturated permeability of the densely compacted GMZ01 bentonite under confined conditions. Engineering Geology, Vol 126, 1–7 [Google Scholar]
  35. Ye, W.M., Wan, M., Chen, B., Chen, Y.G., Cui, Y.J. 2013. Temperature effects on the swelling pressure and saturated hydraulic conductivity of the compacted GMZ01 bentonite. Environmental Earth Science, Vol 68, 281–288. [Google Scholar]
  36. Ye, WM, Borrell, N.C., Zhu, J.Y., Chen, B., Chen., Y.G. 2014a. Advances on the investigation of the hydraulic behaviour of compacted GMZ bentonite. Engineering Geology 169: 41–49 [CrossRef] [Google Scholar]
  37. Ye, W.M., Wan, M., Chen, B., Chen, Y.G., Cui, Y.J., Wang, J. 2014b. An Unsaturated Hydraulic Conductivity Model for Compacted GMZ01 Bentonite with Consideration of Temperature. Environmental Earth Sciences. 71(4): 1937–1944 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.