Open Access
E3S Web Conf.
Volume 13, 2017
4th Scientific and Technical Conference on Modern Technologies and Energy Systems, WTiUE 2016
Article Number 02008
Number of page(s) 7
Section Nanofluids, fluid mechanics and heat transfer
Published online 10 February 2017
  1. S. Kakaç, H. Liu, A. Pramuanjaroenkij, Heat exchangers. Selection, rating, and thermal design. 3rd edition, CRC Press -Taylor & Francis Group, Boca Raton (2012) [Google Scholar]
  2. S. G. Penoncello, Thermal energy systems. CRC Press-Taylor and Francis Group, Boca Raton (2015). [Google Scholar]
  3. D. Taler, Mathematical modeling and control of plate fin and tube heat. Energy Conversion and Management 96 (2015), 452–462. [Google Scholar]
  4. M. Trojan, D. Taler, Thermal simulation of superheaters taking into account the processes occurring on the side of the steam and flue gas. Fuel 150 (2015), 75–87. [CrossRef] [Google Scholar]
  5. D. Taler, K. Kaczmarski, Mathematical modelling of the transient response of pipeline. Journal of Thermal Science 25 (2016), 1–9. [CrossRef] [Google Scholar]
  6. J. Taler, P. Dzierwa, D. Taler, M. Jaremkiewicz, M. Trojan, Monitoring of thermal stresses and heating optimization including industrial applications. Nova Publishers, (New York 2016). [Google Scholar]
  7. P. Dzierwa, Optimum heating of pressure components of steam boilers with regard to thermal stresses, Journal of Thermal Stresses 39 (2016), 874–886. [CrossRef] [Google Scholar]
  8. P. Dzierwa, M. Trojan, D. Taler, K. Kamińska, J. Taler, Optimum heating of thick-walled pressure components assuming a quasi-steady state of temperature distribution, Journal of Thermal Science 25 (2016), 380–388. [CrossRef] [Google Scholar]
  9. J. Taler, P. Dzierwa, D. Taler, P. Harchut, Optimization of the boiler start-up taking into account thermal stresses, Energy 92 (2015), 160–170. [CrossRef] [Google Scholar]
  10. F. W. Dittus, L. M. K. Boelter, Heat transfer in automobile radiators of the tubular type. The University of California Publications on Engineering 2 (1930) 443–461, [Google Scholar]
  11. Reprinted in Int. Commun. Heat Mass 12 (1985) 3–22. [CrossRef] [Google Scholar]
  12. R. H. S. Winterton, Where did the Dittus and Boelter equation come from?. Int. J. Heat Mass Tran. 41 (1998), 809–810. [CrossRef] [Google Scholar]
  13. W. H. McAdams, Heat Transmission, 3rd edn., McGraw-Hill, (New York 1954). [Google Scholar]
  14. A. P. Colburn, A method of correlating forced convectin heat transfer data and a comparison with fluid friction, Trans. AIChE 29(1933) 174–210. [Google Scholar]
  15. E. N. Sieder, E. C. Tate, Heat transfer and pressure drop of liquids in tubes. Ind. Eng. Chem. 28(1936) 1429–1436. [CrossRef] [Google Scholar]
  16. R. L. Webb, A critical evaluation of analytical solutions and Reynolds analogy equations for turbulent heat and mass transfer in smooth tubes. Warme Stoffubertrag. 4 (1971), 197–204. [CrossRef] [Google Scholar]
  17. R. W. Allen, E. R. G. Eckert, Friction and heattransfer measurements to turbulent pipe flow of water (Pr = 7 and 8) at uniform wall heat flux. J. Heat Trans-T. ASME 86(1964), 301–310. [CrossRef] [Google Scholar]
  18. F. Kreith, R. M. Manglik, M. S. Bohn, Principles of heat transfer. 7th edition, Cengage Learning, (Stamford 2011). [Google Scholar]
  19. D. R. Mirth, S. Ramadhyani, D. C. Hittle, Thermal performance of chilled-water cooling coils operating at low water velocities. ASHRAE Transactions, Part 1, 99(1993), 43–53. [Google Scholar]
  20. V. Gnielinski, Neue Gleichungen für den Wärmeund den Stoffübergang in turbulent durchströmten Rohren und Kanälen. Forsch. Ingenieurwes. (Engineering Research) 41 (1975),8–16. [CrossRef] [Google Scholar]
  21. V. Gnielinski, New equations for heat and mass transfer in the turbulent pipe and channel flow. Int. Chem. Eng. 16 (1976), 359–368. [Google Scholar]
  22. G. K. Filonienko, Friction factor for turbulent pipe flow, Teploenergetika 1 (1954), no. 4, 40–44 (in Russian). [Google Scholar]
  23. B. S. Petukhov, Heat transfer and friction in turbulent pipe flow with variable physical properties, in Advances in Heat Transfer, Vol. 6, (1970), 503–564, Edited by J. P. Hartnett and T. F. Irvine, Academic Press, (New York 1970). [Google Scholar]
  24. S. Kakaç, Y. Yener, A. Pramuanjaroenkij, Convective heat transfer. 3rd Edition, CRC Press – Taylor & Francis, Boca Raton (2014). [Google Scholar]
  25. M. Li, T.S. Khan, E. Al-Hajri, Z. H. Ayub, Single phase heat transfer and pressure drop analysis of a dimpled enhanced tube. Appl. Therm. Eng. 101 (2016), 38–46. [CrossRef] [Google Scholar]
  26. Q. Li, Y. Xuan, Convective heat transfer and flow characteristics of Cu-water nanofluid. Sci. China Ser. E: Technol. Sci. 45 (2002),408–416. [Google Scholar]
  27. W. H. Azmi, K. Abdul Hamid, R. Mamat, K.V. Sharma, M. S. Mohamad, Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water-Ethylene glycol mixture. Appl. Therm. Eng. 106 (2016),1190–1199. [CrossRef] [Google Scholar]
  28. E. E. Wilson, A basis for rational design of heat transfer apparatus. Trans. ASME, 37 (1915), 47–82. [Google Scholar]
  29. J. W. Rose, Heat-transfer coefficients, Wilson plots and accuracy of thermal measurements, Exp. Therm. Fluid Sci. 28 (2004), 77–86. [CrossRef] [Google Scholar]
  30. D. Taler, A new heat transfer correlation for transition and turbulent fluid flow in tubes. Int. J. Therm. Sci. 108 (2016), 108–122. [CrossRef] [Google Scholar]
  31. H. Reichardt, Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen, Z. Angew. Math. Mech. 31 (1951) no.7, 208–219. [CrossRef] [Google Scholar]
  32. H. Reichardt, The principles of turbulent heat transfer, Transl. by P.A. Scheck in Recent advances in heat and mass transfer, ed. by J. P. Hartnett, McGraw-Hill, (Boston 1961), 223–252. [Google Scholar]
  33. S. Lau, Effect of plenum length and diameter on turbulent heat transfer in a downstream tube and on plenum-related pressure loss, Ph.D. Thesis, University of Minnesota, (1981). [Google Scholar]
  34. BlackA. III, The effect of circumferentially-varying boundary conditions on turbulent heat transfer in a tube, Ph.D. Thesis, University of Minnesota, 1966. [Google Scholar]
  35. R. Kemink, Heat transfer in a downstream tube of a fluid withdrawal branch, Ph.D. Thesis, University of Minnesota, (1977). [Google Scholar]
  36. D. Wesley, Heat transfer in pipe downstream of a Tee, Ph.D. Thesis, University of Minnesota, (1976). [Google Scholar]
  37. J. P. Abraham, E. M. Sparrow, W. J. Minkowycz, Internal-flow Nusselt numbers for the low-Reynoldsnumber end of the laminar-to-turbulent transition regime, Int. J. Heat Mass Tran. 54 (2011), 584–588. [CrossRef] [Google Scholar]
  38. S. Eiamsa-ard, P. Promvonge, Thermal characteristics in round tube fitted with serrated twisted tape, Appl. Therm. Eng. 30 (2010), 1673–1682. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.