Open Access
E3S Web Conf.
Volume 13, 2017
4th Scientific and Technical Conference on Modern Technologies and Energy Systems, WTiUE 2016
Article Number 02008
Number of page(s) 7
Section Nanofluids, fluid mechanics and heat transfer
Published online 10 February 2017
  1. S. Kakaç, H. Liu, A. Pramuanjaroenkij, Heat exchangers. Selection, rating, and thermal design. 3rd edition, CRC Press -Taylor & Francis Group, Boca Raton (2012)
  2. S. G. Penoncello, Thermal energy systems. CRC Press-Taylor and Francis Group, Boca Raton (2015).
  3. D. Taler, Mathematical modeling and control of plate fin and tube heat. Energy Conversion and Management 96 (2015), 452–462.
  4. M. Trojan, D. Taler, Thermal simulation of superheaters taking into account the processes occurring on the side of the steam and flue gas. Fuel 150 (2015), 75–87. [CrossRef]
  5. D. Taler, K. Kaczmarski, Mathematical modelling of the transient response of pipeline. Journal of Thermal Science 25 (2016), 1–9. [CrossRef]
  6. J. Taler, P. Dzierwa, D. Taler, M. Jaremkiewicz, M. Trojan, Monitoring of thermal stresses and heating optimization including industrial applications. Nova Publishers, (New York 2016).
  7. P. Dzierwa, Optimum heating of pressure components of steam boilers with regard to thermal stresses, Journal of Thermal Stresses 39 (2016), 874–886. [CrossRef]
  8. P. Dzierwa, M. Trojan, D. Taler, K. Kamińska, J. Taler, Optimum heating of thick-walled pressure components assuming a quasi-steady state of temperature distribution, Journal of Thermal Science 25 (2016), 380–388. [CrossRef]
  9. J. Taler, P. Dzierwa, D. Taler, P. Harchut, Optimization of the boiler start-up taking into account thermal stresses, Energy 92 (2015), 160–170. [CrossRef]
  10. F. W. Dittus, L. M. K. Boelter, Heat transfer in automobile radiators of the tubular type. The University of California Publications on Engineering 2 (1930) 443–461,
  11. Reprinted in Int. Commun. Heat Mass 12 (1985) 3–22. [CrossRef]
  12. R. H. S. Winterton, Where did the Dittus and Boelter equation come from?. Int. J. Heat Mass Tran. 41 (1998), 809–810. [CrossRef]
  13. W. H. McAdams, Heat Transmission, 3rd edn., McGraw-Hill, (New York 1954).
  14. A. P. Colburn, A method of correlating forced convectin heat transfer data and a comparison with fluid friction, Trans. AIChE 29(1933) 174–210.
  15. E. N. Sieder, E. C. Tate, Heat transfer and pressure drop of liquids in tubes. Ind. Eng. Chem. 28(1936) 1429–1436. [CrossRef]
  16. R. L. Webb, A critical evaluation of analytical solutions and Reynolds analogy equations for turbulent heat and mass transfer in smooth tubes. Warme Stoffubertrag. 4 (1971), 197–204. [CrossRef]
  17. R. W. Allen, E. R. G. Eckert, Friction and heattransfer measurements to turbulent pipe flow of water (Pr = 7 and 8) at uniform wall heat flux. J. Heat Trans-T. ASME 86(1964), 301–310. [CrossRef]
  18. F. Kreith, R. M. Manglik, M. S. Bohn, Principles of heat transfer. 7th edition, Cengage Learning, (Stamford 2011).
  19. D. R. Mirth, S. Ramadhyani, D. C. Hittle, Thermal performance of chilled-water cooling coils operating at low water velocities. ASHRAE Transactions, Part 1, 99(1993), 43–53.
  20. V. Gnielinski, Neue Gleichungen für den Wärmeund den Stoffübergang in turbulent durchströmten Rohren und Kanälen. Forsch. Ingenieurwes. (Engineering Research) 41 (1975),8–16. [CrossRef]
  21. V. Gnielinski, New equations for heat and mass transfer in the turbulent pipe and channel flow. Int. Chem. Eng. 16 (1976), 359–368.
  22. G. K. Filonienko, Friction factor for turbulent pipe flow, Teploenergetika 1 (1954), no. 4, 40–44 (in Russian).
  23. B. S. Petukhov, Heat transfer and friction in turbulent pipe flow with variable physical properties, in Advances in Heat Transfer, Vol. 6, (1970), 503–564, Edited by J. P. Hartnett and T. F. Irvine, Academic Press, (New York 1970).
  24. S. Kakaç, Y. Yener, A. Pramuanjaroenkij, Convective heat transfer. 3rd Edition, CRC Press – Taylor & Francis, Boca Raton (2014).
  25. M. Li, T.S. Khan, E. Al-Hajri, Z. H. Ayub, Single phase heat transfer and pressure drop analysis of a dimpled enhanced tube. Appl. Therm. Eng. 101 (2016), 38–46. [CrossRef]
  26. Q. Li, Y. Xuan, Convective heat transfer and flow characteristics of Cu-water nanofluid. Sci. China Ser. E: Technol. Sci. 45 (2002),408–416.
  27. W. H. Azmi, K. Abdul Hamid, R. Mamat, K.V. Sharma, M. S. Mohamad, Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water-Ethylene glycol mixture. Appl. Therm. Eng. 106 (2016),1190–1199. [CrossRef]
  28. E. E. Wilson, A basis for rational design of heat transfer apparatus. Trans. ASME, 37 (1915), 47–82.
  29. J. W. Rose, Heat-transfer coefficients, Wilson plots and accuracy of thermal measurements, Exp. Therm. Fluid Sci. 28 (2004), 77–86. [CrossRef]
  30. D. Taler, A new heat transfer correlation for transition and turbulent fluid flow in tubes. Int. J. Therm. Sci. 108 (2016), 108–122. [CrossRef]
  31. H. Reichardt, Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen, Z. Angew. Math. Mech. 31 (1951) no.7, 208–219. [CrossRef]
  32. H. Reichardt, The principles of turbulent heat transfer, Transl. by P.A. Scheck in Recent advances in heat and mass transfer, ed. by J. P. Hartnett, McGraw-Hill, (Boston 1961), 223–252.
  33. S. Lau, Effect of plenum length and diameter on turbulent heat transfer in a downstream tube and on plenum-related pressure loss, Ph.D. Thesis, University of Minnesota, (1981).
  34. BlackA. III, The effect of circumferentially-varying boundary conditions on turbulent heat transfer in a tube, Ph.D. Thesis, University of Minnesota, 1966.
  35. R. Kemink, Heat transfer in a downstream tube of a fluid withdrawal branch, Ph.D. Thesis, University of Minnesota, (1977).
  36. D. Wesley, Heat transfer in pipe downstream of a Tee, Ph.D. Thesis, University of Minnesota, (1976).
  37. J. P. Abraham, E. M. Sparrow, W. J. Minkowycz, Internal-flow Nusselt numbers for the low-Reynoldsnumber end of the laminar-to-turbulent transition regime, Int. J. Heat Mass Tran. 54 (2011), 584–588. [CrossRef]
  38. S. Eiamsa-ard, P. Promvonge, Thermal characteristics in round tube fitted with serrated twisted tape, Appl. Therm. Eng. 30 (2010), 1673–1682. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.