Open Access
Issue
E3S Web Conf.
Volume 14, 2017
Energy and Fuels 2016
Article Number 02009
Number of page(s) 9
Section Fuels
DOI https://doi.org/10.1051/e3sconf/20171402009
Published online 15 March 2017
  1. US EPA, Mercury study report to Congress, EPA-452/R-97-003, (US Government PrintingOffice, Washington DC 1997). [Google Scholar]
  2. US EPA, A study of hazardous air pollutant emissions from electric utility steam generating units. Final Report to Congress, EPA-453/R-98-004a; (US Government Printing Office, Washington DC 1998). [Google Scholar]
  3. AMAP/UNEP, Technical Background Report for the Global Mercury Assessment, (Arctic Monitoring and Assessment Programme, Oslo, Norway/UNEP Chemicals Branch, Geneva, Switzerland, 2013). [Google Scholar]
  4. KOBiZE (National Centre for Emissions Management), Poland’s Informative Inventory, Report 2013. [Google Scholar]
  5. KOBiZE (National Centre for Emissions Management), Poland’s Informative Inventory, Report 2015. [Google Scholar]
  6. P. Burmistrz, K. Kogut, M. Marczak, J. Zwoździak, Fuel Process. Technol. 152 250–258 (2016). [CrossRef] [Google Scholar]
  7. T. Dziok, A. Strugała, A. Rozwadowski, M. Macherzyński, Fuel 159 206–213(2015). [CrossRef] [Google Scholar]
  8. M. Wichliński, R. Kobyłecki, Z. Bis, Arch. Environ. Protec. 39 141–150 (2013). [CrossRef] [Google Scholar]
  9. I. Bojkowska, G. Sokolowska, Mercury in mineral raw materials exploited in Poland as potential sources of environmental pollution (PIG Bulletin, 2001). [Google Scholar]
  10. M.A. Lopez-Anton, Y. Yuan, R. Perry, M.M. Maroto-Valer, Analysis of mercury species present during coal combustion by thermal desorption, Fuel 89 629–634 (2010). [CrossRef] [Google Scholar]
  11. T. Gale, B. Lani, G. Offen, Fuel Process. Technol. 89 139 (2008). [CrossRef] [Google Scholar]
  12. M. Berry, R. Semmes, T. Campbell, S. Glesmann, R. Glesmann, Mat. Power Plant Air Pollutant Control Mega Symposium, Baltimore, MD, Curran Associates, 2006. [Google Scholar]
  13. S. Sjostrom, M. Durham, C.J. Bustard, C. Martin, Activated carbon injection for mercury control: Overview, Fuel 89 1320–1322 (2010). [CrossRef] [Google Scholar]
  14. S.B. Ghorishi, R.M. Keeney, S.D. Serre, et al., Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury, Environ. Sci. Technol. 36 4454–4459 (2002). [CrossRef] [PubMed] [Google Scholar]
  15. J.W. Graydon, X-Z. Zhang, D.W. Kirk, C.Q. Jia, Sorption and stability of mercury on activated carbon for emission control, J. Hazard. Mater. 168 (2-3) 978–982 (2009). [CrossRef] [PubMed] [Google Scholar]
  16. Q. Zhou, Y-F. Duan, Y-G. Hong, et al., Experimental and kinetic studies of gas phase mercury adsorption by raw and bromine modified activated carbon, Fuel Process. Technol. 134 325–332 (2015). [CrossRef] [Google Scholar]
  17. L. Liberti, M. Notarnicola, V. Amicarelli, V. Campanaro, F. Roethel, L. Swanson, Waste Manag. Res. 16 2 (1998). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  18. W. Nowak, J. Pacyna, I. Majchrzak-Kucęba, Sorbenty z popiołu dla energetyki (2010). [Google Scholar]
  19. H. Clack, Methods for reducing mercury emission from coal combustion, In: Mercury as coal combustion pollutant, Kraków (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.