Open Access
E3S Web Conf.
Volume 16, 2017
11th European Space Power Conference
Article Number 08001
Number of page(s) 5
Section Energy Storage: Future Developments in Energy storage
Published online 23 May 2017
  1. Tarascon, J.M., & Armand, M. (2008). Building Better Batteries. Nature 451, 652–657. [CrossRef] [PubMed] [Google Scholar]
  2. Bruce, P.G., Scrosati, B. & Tarascon, J.-M. (2008). Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition 47(16), 2930–2946. [CrossRef] [Google Scholar]
  3. Goodenough, J.B. & Kim,., Y. (2010). Challenges for rechargeable Li batteries. Chem. Mater. 22 587–603. [CrossRef] [Google Scholar]
  4. Arai, H., Okada, S., Sakurai, Y. & Yamaki, J.-i. (1997). Cathode performance and voltage estimation of metal trihalides. J. Power Sources 68(2), 716–719. [CrossRef] [Google Scholar]
  5. Bervas, M., Mansour, A.N., Yoon, W.-S., Al-Sharab, J.F., Badway, F., Cosandey, F., Klein, L.C. & Amatucci, G.G. (2006). Investigation of the Lithiation and Delithiation Conversion Mechanisms of Bismuth Fluoride Nanocomposites. J. Electrochem. Soc. 153(4), A799–A808. [CrossRef] [Google Scholar]
  6. Badway, F., Pereira, N., Cosandey, F. & Amatucci, G.G. (2003). Carbon-Metal Fluoride Nanocomposites: Structure and Electrochemistry of FeF3: С. J. Electrochem. Soc. 150(9), A1209–A1218. [CrossRef] [Google Scholar]
  7. Li, С., Gu, L., Tong, J., Tsukimoto, S. & Maier, J. (2011). A Mesoporous Iron-Based Fluoride Cathode of Tunnel Structure for Rechargeable Lithium Batteries. Adv. Functional Mater. 21(8), 1391–1397. [CrossRef] [Google Scholar]
  8. Doe, R.E., Persson, K.A., Meng, Y.S .& Ceder,G. (2008). First-Principles Investigation of the Li–Fe–F Phase Diagram and Equilibrium and Nonequilibrium Conversion Reactions of Iron Fluorides with Lithium. Chem. Mater. 20(16), 5274–5283. [CrossRef] [Google Scholar]
  9. Conte, D. & Pinna, N. (2014). A review on the application of iron(III) fluorides as positive electrodes for secondary cells. Mater. Renew. Sustain. Energy 3(4), 1–22. [CrossRef] [Google Scholar]
  10. Ferey, G., Leblanc, M., De Pape, R. & Pannetier, J., (1985). Competing Spin Interactions and Frustration Effects in Fluorides, in Inorganic Solid Fluorides, Hagenmuller, P., Editor Academic Press, pp 395–414. [CrossRef] [Google Scholar]
  11. Louvain, N., Fakhry, A., Bonnet, P., El-Ghozzi, M., Guerin, K., Sougrati, M.-T., Jumas, J.-C. & Willmann, P. (2013). One-shot versus stepwise gas-solid synthesis of iron trifluoride: investigation of pure molecular F2 fluorination of chloride precursors. Cryst. Eng. Comm. 15(18), 3664–3671. [CrossRef] [Google Scholar]
  12. Leblanc, M., Ferey, G., Chevallier, P., Calage, Y. & De Pape, R. (1983). Hexagonal tungsten bronze-type FeIII fluoride: (H2O)0.33FeF3; crystal structure, magnetic properties, dehydration to a new form of iron trifluoride. J. Solid State Chem. 47(1), 53–58. [CrossRef] [Google Scholar]
  13. Ferey, G., Leblanc, M., De Pape, R., Passaret, M. & Bothorel-Razazi, M.P. (1975). Cristallisation par voie hydrothermale des fluorures FeF3; FeF3, H2O; FeF3, 3H2O; et NH4FeF4. J. Crystal Growth 29(2), 209–211. [CrossRef] [Google Scholar]
  14. Kim, S.-W., Seo, D.-H., Gwon, H., Kim, J. & Kang, K. (2010). Fabrication of FeF3 Nanoflowers on CNT Branches and Their Application to High Power Lithium Rechargeable Batteries. Adv. Mater. 22(46), 5260–5264. [CrossRef] [PubMed] [Google Scholar]
  15. Li, C., Gu, L., Tong, J. & Maier, J. (2011). Carbon Nanotube Wiring of Electrodes for High-Rate Lithium Batteries Using an Imidazolium-Based Ionic Liquid Precursor as Dispersant and Binder: A Case Study on Iron Fluoride Nanoparticles. ACS Nano 5(4), 2930–2938. [CrossRef] [PubMed] [Google Scholar]
  16. Li, C., Yin, C., Mu, X. & Maier, J. (2013). Top-Down Synthesis of Open Framework Fluoride for Lithium and Sodium Batteries. Chem. Mater. 25(6), 962–969. [CrossRef] [Google Scholar]
  17. Tan, J., Liu, L., Hu, H., Yang, Z., Guo, H., Wei, Q., Yi, X., Yan, Z., Zhou, Q., Huang, Z., Shu, H., Yang, X. & Wang, X. (2014). Iron fluoride with excellent cycle performance synthesized by solvothermal method as cathodes for lithium ion batteries. J. Power Sources 251, 75–84. [CrossRef] [Google Scholar]
  18. Myung, S.-T., Sakurada, S., Yashiro, H. & Sun, Y.-K. (2013). Iron trifluoride synthesized via evaporation method and its application to rechargeable lithium batteries. J. Power Sources 223, 1–8. [CrossRef] [Google Scholar]
  19. Greneche, J.M., Varret, F., Leblanc, M. & Ferey, G. (1987). Mössbauer spectroscopy study of crystallization of amorphous iron (III) fluorides: Influence of experimental conditions. Solid State Comm. 61(12), 813–816. [CrossRef] [Google Scholar]
  20. Leofanti, G., Padovan, M., Tozzola, G. & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today 41, 207–219. [CrossRef] [Google Scholar]
  21. Ma, R., Wang, M., Tao, P., Wang, Y., Cao, C., Shan, G., Yang, S., Xi, L., Chung, J.C.Y. & Lu, Z. (2013). Fabrication of FeF3 nanocrystals dispersed into a porous carbon matrix as a high performance cathode material for lithium ion batteries. J. Mater. Chem. A 1(47), 15060–15067. [CrossRef] [Google Scholar]
  22. Collins, J., Gourdin, G., Foster, M. & Qu, D. (2015). Carbon surface functionalities and SEI formation during Li intercalation. Carbon 92, 193–244. [CrossRef] [Google Scholar]
  23. Yamakawa, N., Jiang, M., Key, B. & Grey, C.P. (2009). Identifying the Local Structures Formed during Lithiation of the Conversion Material, Iron Fluoride, in a Li Ion Battery: A Solid-State NMR, X-ray Diffraction, and Pair Distribution Function Analysis Study. J. Am. Chem. Soc. 131(30), 10525–10536. [CrossRef] [Google Scholar]
  24. Tan, H.J., Smith, H.L., Kim, L., Harding, T.K., Jones, S.C. & Fultz, B. (2014). Electrochemical Cycling and Lithium Insertion in Nanostructured FeF3 Cathodes. J. Electrochem. Soc. 161(3), A445–A449. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.