Open Access
Issue
E3S Web Conf.
Volume 30, 2018
The First Conference of the International Water Association IWA for Young Scientist in Poland “Water, Wastewater and Energy in Smart Cities”
Article Number 01016
Number of page(s) 8
Section Water
DOI https://doi.org/10.1051/e3sconf/20183001016
Published online 06 February 2018
  1. Günthera M., Camhya D., Steffelbauera D., Neumayerb M., Fuchs-Hanuscha D. 2015. Showcasing a smart water network based on an experimental water distribution system. 13th Computer Control for Water Industry Conference, CCWI 2015. Procedia Engineering 119 (2015)450 – 457. [Google Scholar]
  2. Díaz-Díaz R., Muñoz L., Pérez-González D. 2017. Business model analysis of public services operating in the smart city ecosystem: The case of Smart Santander. Future Generation Computer Systems. [Google Scholar]
  3. Strzelecka A., Ulanicki B.,Koop S., Koetsier L., van Leeuwen K., Elelman R. 2017. Integrating water, waste, energy, transport and ICT aspects into the smart city concept 18th Conference on Water. Distribution System Analysis, WDSA 2016. Procedia Engineering 186 (2017) 609 – 616. [Google Scholar]
  4. Shahanas K.M, Sivakumar P.B. 2016. Framework for a smart water management system in the context of smart city initiatives in India. 2nd International Conference on Intelligent Computing, Communication & Convergence (ICCC-2016) Srikanta Patnaik. Interscience Institute of Management and Technology Bhubaneswar, Odisha, India. Procedia Computer Science 92 (2016) 142 – 147. [Google Scholar]
  5. WIDEST Water Innovation through Dissemination Exploitationof Smart Technologies D2.3: Smart WaterGridtopicalroadmap. dostęponline: http://www.widest.eu/downloads/downloads-roadmaps (dostęp 25.06.17). [Google Scholar]
  6. Arfanuzzaman Md., Atiq Rahman A. 2017. Sustainable water demand management in the face of rapid urbanization and ground water depletion for social–ecological resilience building. Global Ecology and Conservation 10 (2017) 9–22. [CrossRef] [Google Scholar]
  7. Engströma R.E., Howells M., Destouni G., Bhatt V., Baziliana M., Rogner H-H. 2017. Connecting the resource nexus to basic urban service provision – with a focus on water-energy interactions in New York City. Sustainable Cities and Society 31 (2017) 83–94. [CrossRef] [Google Scholar]
  8. Kenway S. J., Binks A., Lane J., Lant P. A., Lam K. L., Simms A. 2015. A systemic framework and analysis of urban water energy. Environmental Modelling & Software, 73(November), 272–285. [CrossRef] [Google Scholar]
  9. Scott C.A., Pierce S.A., Pasqualetti M. J., Jones A. L., Montz B. E., Hoover J. H. 2011. Policy and institutional dimensions of the water-energy nexus. Energy Policy, 39(10), 6622–6630. [CrossRef] [Google Scholar]
  10. Bazilian M., Rogner H-H., Howells M., Hermann S., Arent D. 2011. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy, 39 (12) (2011), 7896–7906. [CrossRef] [Google Scholar]
  11. Gourbesville Ph. 2016. Key Challenges for Smart Water. Procedia Engineering. Volume 154, 2016, 11-18. [CrossRef] [Google Scholar]
  12. Rossman L., 2000. Epanet 2 user manual. National Risk Management Research Laboratory, Cincinnati. [Google Scholar]
  13. Epanet: www: https://www.epa.gov/water-research/epanet(accessed 25.06.2017) [Google Scholar]
  14. EPANETTOOLS Web 0.9.2 : Python Package Index, www: Document: https://pypi.python.org/pypi/EPANETTOOLS (accessed 25.06.2017) [Google Scholar]
  15. Olsson D M, Nelson L S. 2012. The Nelder-Mead Simplex Procedure for Function Minimization [Google Scholar]
  16. Nelder J.A., Mead R. 1965. A Simplex Method for Function Minimization. The Computer Journal 7: 308-13. [CrossRef] [Google Scholar]
  17. Powell M. J. D. 1964. An efficient method for finding the minimum of a function of several variables without calculating derivatives, Comput J. [Google Scholar]
  18. Powell M J D. 2007 A view of algorithms for optimization without derivatives. 2007.Cambridge University Technical Report DAMTP 2007/NA03. [Google Scholar]
  19. Kraft D. 1988. A software package for sequential quadratic programming. Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace Center – Institute for Flight Mechanics, Koln, Germany. [Google Scholar]
  20. Postgis Web: http://postgis.net/ (accessed 25.06.2017) [Google Scholar]
  21. Santana M.V., Zhang Q., Nachabe M.H., Xie X., Mihelcic JR. 2017. Could smart growth lower the operational energy of water supply? A scenario analysis in Tampa, Florida, USA. Landscape and Urban Planning. Volume 164, August 2017, 99–108. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.