Open Access
E3S Web Conf.
Volume 31, 2018
The 2nd International Conference on Energy, Environmental and Information System (ICENIS 2017)
Article Number 05013
Number of page(s) 6
Section 05. Waste Management
Published online 21 February 2018
  1. RAD. Arancon, CSK. Lin, KM. Chan, TH.Kwan, R.Luque. Energy SciEng1:53-71. (2013) [Google Scholar]
  2. CSK. Lin, LA. Pfaltzgraff, L.Herrero-Davila, EB. Mubofu, S. Abderrahim, JH. Clark, et al. Energy Environ Sc;6:426-64 (2013) [CrossRef] [Google Scholar]
  3. L. Matsakas, U. Rova, P. Christakopoulos. BioResources;11:5482-99. (2016) [Google Scholar]
  4. TPT. Pham, R. Kaushik, GK. Parshetti, R. Mahmood, R. Balasubramanian, Waste Manage; 38:399-408. (2015) [CrossRef] [Google Scholar]
  5. E. Svensson Myrin, PE. Persson, S. Jansson. Fuel;132:165- 9. (2014) [CrossRef] [Google Scholar]
  6. Y. Qu, O. Zhu, J. Sarkis, Y. Geng, Y. Zhong. J Clean Prod.;17 :1175-82. (2013) [Google Scholar]
  7. Bupe GMwanzaa, Charles Mbohwab. Procedia Manufacturing 8.649–656. (2017) [CrossRef] [Google Scholar]
  8. M.P. Subramanian, Conservation and Recycling 28, 253–263. (2000) [CrossRef] [Google Scholar]
  9. D. Hoornweg, P. Bhada-Tata, The World Bank; (2012). [Google Scholar]
  10. F. Pinto, P. Costa, I. Gulyurtlu, CabritaI. J Anal ApplPyrolysis; 51(1-2):39–55. (1999) [CrossRef] [Google Scholar]
  11. Sriningsih, Wiwin, Saerodji, Monica Garby, Trisunaryanti, Wega, Triyono, Armunanto, Ria, Falah, Iip Izul, Procedia Environ. Sci. 20, 215–224. (2014) [CrossRef] [Google Scholar]
  12. Antony, Raja, Advaith, Murali,. J. Mater. Sci. Eng. B1, 86–89. (2011) [Google Scholar]
  13. AK. Panda, RK. Singh, DK. Mishra. Renew Sustain Energy Rev;14 (1):233–48.(2010) [CrossRef] [Google Scholar]
  14. C. Zhou, W. Fang, W. Xu, A. Cao, R. Wang. Characteristics and the recovery potential of plastic wastes obtained from landfill mining; 80:80–6.(2014) [Google Scholar]
  15. P. Lettieri, S. Al-Salem,Thermochemical treatment of plastic solid waste. In: Letcher TM, ValleroD, editors.Waste :A handbook for management;,p. 233–42.(2011) [Google Scholar]
  16. DS. Scott, SR. Czernik, J. Piskorz, DSAG. Radlein. Energy Fuels.;4(4):407–11.(1990) [CrossRef] [Google Scholar]
  17. M. Sarker, M. M. Rashid, S. Rahman, M. Molla, Conversion of Low Density Polyethylene (LDPE) and Polypropylene (PP) Waste Plastics into Liquid Fuel Using Thermal Cracking Process 2(1), 1–11. (2012) [Google Scholar]
  18. D. Grazhdani, Waste Management 48, 3–13.(2016) [CrossRef] [Google Scholar]
  19. OECD, Global forum on environment focusing on sustainable materials. A material case study. (2010) [Google Scholar]
  20. J. Bogner, M. Abdelrafie Ahmed, C. Diaz, A. Faaij, Q. Gao, S. Hashimoto, et al., 2007. Waste management. In: Metz, B., Davidson, O.R., Boesch, P.R., Dave, R., Meyer, L.A. (Eds.), Climate Change 2007: Mitigation Contribution of Working Group III to the Fourth Assessment Report of the International Panel on Climate Change. Cambridge University Press, Cambridge, UK. (2007) [Google Scholar]
  21. D. A. Turner, I. D. Williams, S. Kemp, Resources, Conservation and Recycling, 105, 186–197. (2015) [CrossRef] [Google Scholar]
  22. Matlack AS. Introduction to green chemistry. New York: Marcel Decker Inc; (2001). [Google Scholar]
  23. PT. Williams, E. Slaney. Resour Conserv Recycl;51 (4):754–69.(2007) [CrossRef] [Google Scholar]
  24. RC. Thompson, SH.Swan, CJ.Moore, FSV. Saal. Our plastic age. Philos Trans R Soc B;364(1526):1973–6.(2009) [CrossRef] [Google Scholar]
  25. J. Aguado, DP. Serrano, JM Escola, Ind Eng Chem Res;47(21):7982–92.(2008) [CrossRef] [Google Scholar]
  26. FJ. Passamonti, U. Sedran. Appl Catal B: Environ;125:499–506. (2012) [CrossRef] [Google Scholar]
  27. NA. Owen, OR. Inderwildi, DA. King, Energy Policy; 38(8):4743–9.(2010) [CrossRef] [Google Scholar]
  28. SZ. Erhan, BK. Sharma, JM. Perez. Ind Crops Prod; 24(3):292–9.(2006) [CrossRef] [Google Scholar]
  29. Plastic Wastes: Resource Recovery and Recycling in Japan. Tokyo: Plastic Waste Management Institute; 1985 [Google Scholar]
  30. L. Gu, T. Ozbakkaloglu, 2016. Use of recycled plastics in concrete: A critical review. Waste Management. Vu P, Nishida O, Fujita H, Harano W. Reduction of NOx and PM from diesel engines by WPD emulsified fuel. SAE Tech Pap;1:0152. (2001) [Google Scholar]
  31. BK. Sharma, BR. Moser, KE. Vermillion, KM. Doll, N. Rajagopalan. Fuel Process Technol; 122:79–90.(2014) [CrossRef] [Google Scholar]
  32. N. Miskolczi, A. Angyal, L. Bartha, I. Valkai, Fuel ProcessTechnol; 90(7-8):1032–40. (2009) [CrossRef] [Google Scholar]
  33. G. Elude, M. Olazar, G. Lopez, M. Amutio, M. Artetxe, R. Aguado, J. Bilbao. J Anal Appl Pyrolysis; 85(1-2):345–51.(2009) [CrossRef] [Google Scholar]
  34. M. Syamsiro, H. Saptoadi, T. Norsujianto, P. Noviasri, S. Cheng, Z. Alimuddin, K. Yoshikawa. Energy Procedia;47:180–8.(2014) [CrossRef] [Google Scholar]
  35. S. Kumar, R. Prakash, S. Murugan, RK. Singh, Energy Convers Manag;74:323–31. (2013) [CrossRef] [Google Scholar]
  36. G. BelgiornoV De Feo, C. Della Rocca, RMA. Napoli, Waste Manag; 23(1):1–15.(2003) [CrossRef] [PubMed] [Google Scholar]
  37. RP. Singh, VV. Tyagi, T. Allen, MH. Ibrahim, R. Kothari, Renew Sustain Energy Rev; 15(9):4797–808.(2011) [CrossRef] [Google Scholar]
  38. K. Murata, K. Sato, Y. Sakata, Journal of Analytical and Applied Pyrolysis; 71(2): 569–89 (2004) [CrossRef] [Google Scholar]
  39. L. Sorum, MG. Gronli, JE. Hustad. Fuel; 80(9):1217–27. (2001) [CrossRef] [Google Scholar]
  40. A. Demirbas, Journal of Analytical and Applied Pyrolysis; 72:97–102. (2004) [CrossRef] [Google Scholar]
  41. FJ. Mastral, E. Esperanza, P. Garci’a, M. Juste. Journal of Analytical and Applied Pyrolysis; 63(1):1–15. (2002) [CrossRef] [Google Scholar]
  42. SS. Kim, S. Kim. Chemical Engineering Journal; 98(1-2):53–60. (2004) [CrossRef] [Google Scholar]
  43. OS. Woo, N. Ayala, LJ. Broadbelt. Catalysis Today; 55(1-2):161–71. (2000). [CrossRef] [Google Scholar]
  44. OS. Woo, LJ. Broadbelt, Catalysis Today; 40:12140. (1998). [Google Scholar]
  45. JH. Chan, ST. Balke. Polymer Degradation and Stability; 57(2):135–49. (1997). [CrossRef] [Google Scholar]
  46. AR. Songip, Applied Catalysis B Environmental; 2(2-3):153–64. (1993). [CrossRef] [Google Scholar]
  47. HS. Joo, JA. Guin. Continuous upgrading of a plastics pyrolysis liquid to an environmentally favorable [Google Scholar]
  48. DP. Serrano, J. Aguado, M. Escola, E. Garagorri, Applied Catalysis B Environmental;44(2):95–105. (2003). [CrossRef] [Google Scholar]
  49. Y. Sakata, MA. Uddin, A. Muto. Journal of Analytical and Applied Pyrolysis;51(1-2):135–55. (1999) [CrossRef] [Google Scholar]
  50. Alka Zadgaonkar. Conversion of Waste Plastic into Liquid Hydrocarbons/Energy—A major breakthrough in the arena of non-conventional sources of energy, Information Brochure and Technical Write-Up. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.