Open Access
E3S Web Conf.
Volume 33, 2018
High-Rise Construction 2017 (HRC 2017)
Article Number 02001
Number of page(s) 13
Section 2 Engineering Systems and Building Materials
Published online 06 March 2018
  1. (last accessed 04.04.2017) [Google Scholar]
  2. (last accessed 08.04.2017) [Google Scholar]
  3. B. S. Taranath, Steel, concrete, and composite design of tall buildings (New York: McGraw-Hill, 1997) [Google Scholar]
  4. Thematic report: “Đề xuất lựa chọn hệ kết cấu BTCT chịu tải trọng ngang cho nhà siêu cao tầng ở Việt Nam (Solution for lateral resisting systems of reinforced concrete high-rise buildings in Vietnam)”. Division of Reinforced Concrete Buildings (National University of Civil Engineering (NUCE), Vietnam, 2015) [Google Scholar]
  5. M. M. Ali, K. S. Moon, Structural Developments in Tall Buildings: Current Trends and Future Prospects, Architectural Science Review, 50(3), 205-223 (2007) [CrossRef] [Google Scholar]
  6. J. Leonard, Investigation of Shear Lag Effect in High-rise Buildings with Diagrid System, Master’s thesis of Engineering, (Massachusetts Institute of Technology, 2007) [Google Scholar]
  7. M. H. M. Al-Sherrawi, G. A. Fadhil, Effect of stiffeners on shear lag in steel box girders, Al-Khwarizmi Engineering Journal, 8(2), 63-76 (2012) [Google Scholar]
  8. V. Kristek, Z. P. Bazant, Shear lag effect and uncertainty in concrete box girder creep, Journal of Structural Engineering, 113(3) (1987) [Google Scholar]
  9. Y. Zhou, Analysis of the shear lag effect of cantilever box girder, Engineering Review, 34(3), 197-207 (2014) [Google Scholar]
  10. R. K. Sorensen, Evaluation of shear lag in standard H-/I-sections, (Aalborg University Esbjerg, 2013) [Google Scholar]
  11. B. S. Taranath, Structural analysis and design of tall buildings: Steel and composite construction (New York: McGraw-Hill, 1988) [Google Scholar]
  12. Y. Singh, A. K. Nagpal, Negative shear lag in framed-tube buildings, Journal of Structural Engineering, 120(11) (1994) [Google Scholar]
  13. K.-K. Lee, H. Guan, and Y.-Ch. Loo, Simplified analysis of shear lag in framed tube structures with multiple internal tubes, Computational Mechanics, 26(5), 447-458 (2000) [CrossRef] [Google Scholar]
  14. H. A. Ghasemi, Optimal design of high-rise building bundled tube systems, Advances in Science and Technology Research Journal, 10(30) (2016) [Google Scholar]
  15. K. S. Moon, Dynamic relationship between technology and architecture in tall buildings, PhD thesis, (Massachusetts Institute of Technology, 2005) [Google Scholar]
  16. F. Nouri, P. Ashtari, Investigation of the shear lag phenomenon and structural behavior of framed tube and braced tube tall structures, Int. Conf. on Civil Engineering, Architecture & Urban Sustainable Development (Tabriz, Iran, 2013) [Google Scholar]
  17. Y. D. Nagvekar, M. P. Hampali, Analysis of shear lag effect in hollow structure, International Journal of Engineering Research & Technology (IJERT), 3(7) (2014) [Google Scholar]
  18. H. Gaur, R. K. Goliya, Mitigating shear lag in tall buildings, Int. Journal of Advanced Structural Engineering (IJASE), 7(3), 269-279 (2015) [CrossRef] [Google Scholar]
  19. J. C. D. Hoenderkamp, H. H. Snijder, Preliminary analysis of high-rise braced frames with façade riggers, Journal of Structural Engineerinf, 129(5) (2003) [Google Scholar]
  20. R. S. Nair, Belt trusses and basements as “virtual” outriggers for tall buildings, Engineering Journal, AISC, 35(4) (1998) [Google Scholar]
  21. Eurocode-8, Design of structures for earthquake resistance (2004) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.