Open Access
Issue
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
Article Number 05048
Number of page(s) 8
Section Fluid mechanics and sediment processes
DOI https://doi.org/10.1051/e3sconf/20184005048
Published online 05 September 2018
  1. M.B. Kalinowska, P.M. Rowiński, Uncertainty in computations of the spread of warm water in a river - lessons from Environmental Impact Assessment case study, Hydrol. Earth Syst. Sci., 16, 4177-4190, DOI: 10.5194/hess-16-4177-2012 (2012) [CrossRef] [Google Scholar]
  2. P.M. Rowiński, M.B. Kalinowska, Admissible and inadmissible simplifications of pollution transport equations, In: R.M.L. Ferreira, et al. (eds) RIVER FLOW 2006, (2006) [Google Scholar]
  3. M.B. Kalinowska, P.M. Rowiński, Modeling of the spread of thermal pollution in rivers with limited data, in: A. Schleiss, G. de Cesare, M. Franca, M. Pfister (eds); River Flow 2014, London, CRC Press, DOI: 10.1201/b17133-32 (2015) [Google Scholar]
  4. Dz. U. 2006 Nr 137, poz. 984, (Journal of Laws of the Republic of Poland) (2006) [Google Scholar]
  5. Dz.U. 2002 nr 176 poz. 1455, (Journal of Laws of the Republic of Poland) (2002) [Google Scholar]
  6. M.B. Kalinowska, P.M. Rowiński, J. Kubrak, D. Mirosław-Świa{ogonek}tek, Scenarios of the spread of a waste heat discharge in a river - Vistula River case study, Acta Geophys. 60, 1, 214-231, DOI: 10.2478/s11600-011-0045-x (2012) [CrossRef] [Google Scholar]
  7. M.B. Kalinowska, P.M. Rowiński, Truncation errors of selected finite difference methods for two-dimensional advection-dispersion equation with mixed derivatives, Acta Geophys. 55, 1, 104-118, DOI:10.2478/s11600-006-0046-3 (2007) [CrossRef] [Google Scholar]
  8. M.B. Kalinowska, P.M. Rowiński, Numerical Solutions of Two-Dimensional Mass Transport Equation in Flowing Surface Waters. Monographic Volume, Publs. Inst. Geophys. Pol. Acad. Sc . E-8, 404 (2008) [Google Scholar]
  9. M.S. Altinakar, W. Czernuszenko, P.M. Rowiński, S.S.Y. Wang (eds.), Computational Modeling for the Development of Sustainable Water-Resources Systems in Poland, Publs. Inst. Geophys. Pol. Acad. Sc. E-5, 387 (2005) [Google Scholar]
  10. Y.F. Jia, S.S.Y. Wang, CCHE2D: Two-dimensional hydrodynamic and sediment transport model for unsteady open channel flow over loose bed, NCCHE Technical Report, NCCHE-TR-2001-01 (2001) [Google Scholar]
  11. J. Ye, J.A. McCorquodale, Depth-averaged hydrodynamic model in curvilinear collocated grid, J. Hydraul. Eng. ASCE 123, 5, 380-388, DOI:10.1061/(ASCE)0733-9429(1997)123:5(380) (1997) [CrossRef] [Google Scholar]
  12. M.B. Kalinowska, P.M. Rowiński, Thermal pollution in rivers - modelling of the spread of thermal plumes, In Rivers - physical, fluvial and environmental processes, P.M. Rowiński, A. Radecki-Pawlik (eds), GeoPlanet-Earth Plan; Springer, 591-613. DOI:10.1007/978-3-319-17719-9_(2015) [Google Scholar]
  13. B. Fal, P. Da{ogonek}browski, Two hundred years of hydrological observations and measurements of the Vistula in Warsaw: flows of the Vistula River in Warsaw (In Polish), Gospodarka Wodna, 12, 503-510 (2001) [Google Scholar]
  14. H. Kowalski, P. Kuźniar, A. Magnuszewski, The lowest water levels of the Vistula River in Warsaw and underwater archaeological discoveries (In Polish), Gospodarka Wodna, 1, 25-30 (2013) [Google Scholar]
  15. Flood Safety Program in the Central Vistula River Basin - assumptions (In Polish), Warszawa (2011) [Google Scholar]
  16. IMGW, The characteristic flows of Polish rivers in the years 1951-1970 (In Polish), Warszawa (1980) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.