Open Access
Issue
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
Article Number 05053
Number of page(s) 8
Section Fluid mechanics and sediment processes
DOI https://doi.org/10.1051/e3sconf/20184005053
Published online 05 September 2018
  1. Walling D. E., Webb B. W. (1996). Erosion and sediment yield: A global overview. Proc. IAHS Publications-Series of Proceedings and Reports-Intern Association Hydraulical Sciences 9: 2911-2921. [Google Scholar]
  2. Syvitski J. P. M. (2003). Supply and flux of sediment along hydrological pathways: research for the 21st century. Global and Planetary Change 39 (1): 1-11. DOI: 10.1016/S0921-8181(03)00008-0. [CrossRef] [Google Scholar]
  3. Anselmetti F. S., Bühler R., Finger D., Girardclos S., Lancini A., Rellstab C., Sturm M. (2007). Effects of Alpine hydropower dams on particle transport and lacustrine sedimentation. Aquatic Sciences 69 (2): 179-198. [CrossRef] [Google Scholar]
  4. Jacobs F., Winkeler W., Hinkeler F., Volkart P. (2001). Betonabrasion im Wasserbau ('Concrete abrasion at hydraulic structures'). VAW-Mitteilung 168 (H.-E. Minor, ed.), ETH Zurich, Switzerland, (in German). [Google Scholar]
  5. Sklar L. S., Dietrich W. E. (2004). A mechanistic model for river incision into bedrock by saltating bed load. Water Resources Research 40 (6). DOI: W06301 [Google Scholar]
  6. Beer A. R., Turowski J. M. (2015). Bedload transport controls bedrock erosion under sediment-starved conditions. Earth Surface Dynamics 3: 291-309. [CrossRef] [Google Scholar]
  7. Ishibashi T. (1983). Hydraulic study on protection for erosion of sediment flush equipments of dams. Civil Society 334 (6): 103-112 (in Japanese). [Google Scholar]
  8. Johnson J. P. L., Whipple K. X. (2010). Evaluating the controls of shear stress, sediment supply, alluvial cover, and channel morphology on experimental bedrock incision rate. Journal of Geophysical Research-Earth Surface 115. DOI: F02018 [Google Scholar]
  9. Uetz H. (1986). Abrasion und Erosion ('Abrasion and erosion'). Verlag Carl Hanser, München, Germany (in German). [Google Scholar]
  10. Wellinger K., Uetz H. (1955). Gleitverschleiß, Spülverschleiß, Stahlverschleiß unter der Wirkung von körnigen Stoffen ('Sliding, flushing and jetting wear under the impact of granular materials'). VDI-Verlag, (in German). [Google Scholar]
  11. Clark S. P. (1966). Handbook of physical constants. 97, Geological Society of America. [Google Scholar]
  12. Sklar L. S., Dietrich W. E. (2012). Correction to “A mechanistic model for river incision into bedrock by saltating bed load”. Water Resources Research 48 (6). DOI: W06301. [CrossRef] [Google Scholar]
  13. Auel C., Albayrak I., Sumi T., Boes R. M. (2017a). Sediment transport in high-speed flows over a fixed bed: 1. Particle dynamics. Earth Surface Processes and Landforms. DOI: 10.1002/esp.4128. [Google Scholar]
  14. Auel C., Albayrak I., Sumi T., Boes R. M. (2017b). Sediment transport in high-speed flows over a fixed bed: 2. Particle impacts and abrasion prediction. Earth Surface Processes and Landforms. DOI: 10.1002/esp.4132. [Google Scholar]
  15. Auel C. (2014). Flow charachteristics, particle motion and invert abrasion in sediment bypass tunnels. VAW-Mitteilungen 229 (R. Boes, ed.), ETH Zurich, Switzerland. [Google Scholar]
  16. Inoue T, Izumi N, Shimizu Y, Parker G. (2014). Interaction among alluvial cover, bed roughness, and incision rate in purely bedrock and alluvial bedrock channel. Journal of Geophysical Research: Earth Surface 119 (10): 2123-2146. [CrossRef] [Google Scholar]
  17. Turowski J. M., Böckli M., Rickenmann D., Beer A. R. (2013). Field measurements of the energy delivered to the channel bed by moving bed load and links to bedrock erosion. Journal of Geophysical Research: Earth Surface 118 (4): 2438-2450. [CrossRef] [Google Scholar]
  18. Whipple K. X., Tucker G. E. (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Jl. of Geophysical Research-Solid Earth 104 (B8): 17661-17674. [CrossRef] [Google Scholar]
  19. Turowski, J.M. (2009). Stochastic modeling of the cover effect and bedrock erosion. Water Resources Research 45: W03422. [CrossRef] [Google Scholar]
  20. Beyeler J. D., Sklar L. S. (2010). Bedrock resistance to fluvial erosion: the importance of rock tensile strength, crystal grain size and porosity in scaling from the laboratory to the field. AGU Fall Meeting: Abstract EP41D-0740. [Google Scholar]
  21. Momber A. (2014). Effects of target material properties on solid particle erosion of geomaterials at different impingement velocities. Wear 319 (1): 69-83. [CrossRef] [Google Scholar]
  22. Scheingross J. S., Brun F., Lo D. Y., Omerdin K., Lamb M. P. (2014). Experimental evidence for fluvial bedrock incision by suspended and bedload sediment. Geology 42 (6): 523-526. [CrossRef] [Google Scholar]
  23. Lamb M. P., Finnegan N. J., Scheingross J. S., Sklar L. S. (2015). New insights into the mechanics of fluvial bedrock erosion through flume experiments and theory. Geomorphology (244): 33-55. [CrossRef] [Google Scholar]
  24. Small E. E., Blom T., Hancock G. S., Hynek B. M., Wobus C. W. (2015). Variability of rock erodibility in bedrock-floored stream channels based on abrasion mill experiments. Journal of Geophysical Research: Earth Surface 120 (8): 1455-1469. [CrossRef] [Google Scholar]
  25. Müller-Hagmann, M. (2018). Hydroabrasion by high-speed sediment-laden flows in sediment bypass tunnels. VAW-Mitteilungen 239 (R. Boes, ed.). Also published as a Doctoral Thesis. Nr. 24291, ETH Zurich. ETH Zurich, Switzerland (in preparation). [Google Scholar]
  26. GEWISS (2014). Gewässerinformationssystem ('Water information system'). Federal Authorities of Switzerland. Access 26.3.2012, from http://gewiss.admin.ch/Gewiss_internet/gewiss_v5_0_internet/de/viewer.htm (in German). [Google Scholar]
  27. SBZ (1943). Rekonstruktion des Umleittunnels am Pfaffensprung des Kraftwerks Amsteg der SBB ('Reconstruction of the bypass tunnel Pfaffensprung of the power plant Amsteg of the SBB'). Schweizerische Bauzeitung 121: 41-42 (in German). [Google Scholar]
  28. Müller B., Walker M. (2015). The Pfaffensprung sediment bypass tunnel: 95 years of experience. Proc. First International Workshop on Sediment Bypass Tunnels, VAW-Mitteilungen 232 (R. Boes, ed.), VAW, ETH Zurich, Switzerland: 247-258. [Google Scholar]
  29. Prandtl L. (1949). Führer durch die Strömungslehre ('Guide through fluid mechanics'). Vieweg und Sohn, Braunschweig, Germany (in German). [Google Scholar]
  30. Jacobs F., Hagmann M. (2015). Sediment Bypass Tunnel Runcahez: Invert Abrasion 1995-2014. Proc. First International Workshop on Sediment Bypass Tunnels, VAW-Mitteilungen 232 (R. Boes, ed.), Zurich, Switzerland: 211-222. [Google Scholar]
  31. Sklar L. S., Dietrich W. E. (2001). Sediment and rock strength controls on river incision into bedrock. Geology 29 (12): 1087-1090. [CrossRef] [Google Scholar]
  32. Kryžanowski A., Mikoš M., Šušteršič J., Ukrainczyk V., Planinc I. (2012). Testing of concrete abrasion resistance in hydraulic structures on the Lower Sava River. Strojniški vestnik - Journal of Mechanical Engineering 58 (4): 245-254. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.