Open Access
Issue
E3S Web Conf.
Volume 45, 2018
VI International Conference of Science and Technology INFRAEKO 2018 Modern Cities. Infrastructure and Environment
Article Number 00039
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/20184500039
Published online 30 July 2018
  1. P. McKendry, Bioresource Technology, 83, 37-46, (2002). [CrossRef] [PubMed] [Google Scholar]
  2. M. Zajemska, D. Musiał, Problemy Inżynierii Rolniczej, 4, 107-118, (2013). [Google Scholar]
  3. W. Wyszkowski, Instalacje biomasy w elektrowniach w praktyce, Ochrona Przeciwpożarowa, 1, (2014). [Google Scholar]
  4. J. Zuwała, Energetyka, Problemy Energetyki i Gospodarki Paliwowo-Energetycznej, 2, 108-114, (2010). [Google Scholar]
  5. L. Szecowka Ekologiczne efekty energetyczne wykorzystania biopaliw, (Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2009). [Google Scholar]
  6. W. Rybak Spalanie i współspalanie biopaliw stałych, (Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2006). [Google Scholar]
  7. M. Ściążko, J. Zuwała, M. Pronobis, Współspalanie biomasy i paliw alternatywnych w energetyce (Instytut Chemicznej Przerobki Węgla i Politechniki Śląskiej, Zabrze 2007). [Google Scholar]
  8. J. M. Ebeling, B. M. Jenkins, Transactions of the American Society of Agricultural and Biological Engineers, 23, 898-902, (1985). [CrossRef] [Google Scholar]
  9. M. Sami, K. Annamalai, M. Wooldrige, Progress in Energy and Combustion Science, 27, 171-214, (2001). [CrossRef] [Google Scholar]
  10. R. K. Eckhoff, Journal of Loss Prevention in the Process Industries, 18, 225-237, (2005). [CrossRef] [Google Scholar]
  11. J. Gummer, G. A. Lunn, Journal of Loss Prevention in the Process Industries, 16, 27-32, (2003). [CrossRef] [Google Scholar]
  12. K. R. G. Hein, J. M. Bemtgen, Fuel Processing Technology, 54, 158-169, (1998). [Google Scholar]
  13. A. Kuczaj, Budownictwo i Inżynieria Środowiska, 1, 205-214, (2010). [Google Scholar]
  14. C. H., Medina, H. N. Phylaktou, H. Sattar, G. E. Andrews., B. M. Gibbs, Biomass and Bioenergy, 53, 95-104, (2013). [CrossRef] [Google Scholar]
  15. C. H., Medina, B. MacCoitir, H. Sattar, D. JF Slatter, H. N. Phylaktou, G. E. Andrews., B. M. Gibbs, Fuel, 151, 91-101, (2015) [CrossRef] [Google Scholar]
  16. Ptak S., Analiza zagrożeń wybuchowych związanych ze współspalaniem biomasy i węgla, (Rozprawa Doktorska, 2016). [Google Scholar]
  17. PN-EN 14034-1+A1:2011 Determination of explosion characteristics of dust clouds-Part 1: Determination of the maximum explosion pressure pmax of dust clouds. [Google Scholar]
  18. PN-EN 14034-2+A1:2011 Determination of explosion characteristics of dust clouds-Part 2: Determination of the maximum rate of explosion pressure rise. (dp/dt)max of the dust clouds [Google Scholar]
  19. PN-EN 14034-3+A1:2011 Determination of explosion characteristics of dust clouds-Part 3: Determination of the lower explosion limit LEL of dust clouds [Google Scholar]
  20. PN-EN 50281-2-1:2002 Electrical appliances for usage in the presence of flammable dusts. Part 2-1 Testing methods-Determinaion methods of minimum dust ignition temperature [Google Scholar]
  21. PN-EN 13821:2004 Potentially Explosive Atmospheres-Explosion Prevention and Protection-Determination of Minimum Ignition Energy of Dust/Air Mixtures [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.