Open Access
E3S Web Conf.
Volume 51, 2018
2018 3rd International Conference on Advances on Clean Energy Research (ICACER 2018)
Article Number 03001
Number of page(s) 4
Section Environmental Remediation and Quality Assessment
Published online 24 August 2018
  1. W.M. Kays, Numerical solutions for laminar-flow heat transfer in circular tubes, Trans. ASME. 77 (1955) 1265-1274. [Google Scholar]
  2. R.K. Shah, M.S. Bhatti, “Laminar convective heat transfer in ducts,” in Handbook of single-phase conective heat transfer, John-Wiley, 1987. [Google Scholar]
  3. K. Lien, J.P. Monty, M.S. Chong, A. Ooi, The Entrance Length for Fully Developed Turbulent Channel Flow, in:15th Australas. Fluid Mech. Conf., 2004: pp. 1-4. [Google Scholar]
  4. L.F. Moody, Friction factors for pipe flow, Trans ASME. 66 (1944) 671-684. doi:10.1017/S0022112004009796. [Google Scholar]
  5. A. Bejan, Convection heat transfer, 3rd ed., Wiley, New Jersey, 2004. [Google Scholar]
  6. R.J. Goldstein, W.E. Ibele, S. V. Patankar, T.W. Simon, T.H. Kuehn, P.J. Strykowski, et al., Heat transfer--A review of 2005 literature, Int. J. Heat Mass Transf. 53 (2010) 4397-4447. [CrossRef] [Google Scholar]
  7. B. Chen, K. Ho, Y.A. Abakr, A. Chan, Fluid dynamics and heat transfer investigations of swirling decaying flow in an annular pipe Part 1: Review, problem description, verification and validation, Int. J. Heat Mass Transf. (2015). doi:10.1016/j.ijheatmasstransfer.2015.07.129. [PubMed] [Google Scholar]
  8. R. Hreiz, C. Gentric, N. Midoux, Numerical investigation of swirling flow in cylindrical cyclones, Chem. Eng. Res. Des. 89 (2011) 2521-2539. doi:10.1016/j.cherd.2011.05.001. [CrossRef] [Google Scholar]
  9. T. Bali, B.A. Sarac, B. Ayhan, Experimental investigation of decaying swirl flow through a circular pipe for binary combination of vortex generators ☆, Int. Commun. Heat Mass Transf. 53 (2014) 174-179. doi:10.1016/j.icheatmasstransfer.2014.02.030. [CrossRef] [Google Scholar]
  10. M. Ahmadvand, A.F. Najafi, S. Shahidinejad, An experimental study and CFD analysis towards heat transfer and fluid flow characteristics of decaying swirl pipe flow generated by axial vanes, Meccanica. 45 (2010) 111-129. doi:10.1007/s11012-009-9228-9. [CrossRef] [Google Scholar]
  11. C. Biegger, C. Sotgiu, B. Weigand, Numerical investigation of flow and heat transfer in a swirl tube, Int. J. Therm. Sci. 96 (2015) 319-330. doi:10.1016/j.ijthermalsci.2014.12.001. [CrossRef] [Google Scholar]
  12. C. Biegger, B. Weigand, Detached Eddy Simulation of Flow and Heat Transfer in Swirl Tubes, in: High Perform. Comput. Sci. Eng. 15, Springer International Publishing, Cham, 2016: pp. 449-461. doi:10.1007/978-3-319-24633-8_29. [Google Scholar]
  13. B. Chen, K. Ho, F.G.F. Qin, R. Jiang, Y.A. Abakr, A. Chan, Validation and Visualization of Decaying Vortex Flow in an Annulus, 7th Int. Conf. Appl. Energy - ICAE2015. 75 (2015) 3098-3104. doi:10.1016/j.egypro.2015.07.640. [Google Scholar]
  14. B. Chen, K. Ho, Y.A. Abakr, A. Chan, Fluid dynamics and heat transfer investigations of swirling decaying flow in an annular pipe Part 2: Fluid flow, Int. J. Heat Mass Transf. (2016). doi:10.1016/j.ijheatmasstransfer.2016.01.069. [Google Scholar]
  15. K. Ho, Y.A. Abakr, A. Chan, An experimental set-up for investigating swirling decaying flow in an annular pipe, Int. Commun. Heat Mass Transf. 38 (2011) 1253-1261. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.