Open Access
Issue
E3S Web Conf.
Volume 53, 2018
2018 3rd International Conference on Advances in Energy and Environment Research (ICAEER 2018)
Article Number 03022
Number of page(s) 7
Section Environment Engineering, Environmental Safety and Detection
DOI https://doi.org/10.1051/e3sconf/20185303022
Published online 14 September 2018
  1. Raouf Mobasheri, Zhijun Peng, CFD investigation of the effects of re-entrant combustion chamber geometry in a HSDI diesel engine, Int. Scholarly Sci. Res. Innovation 7(4)(2013)770-780. [Google Scholar]
  2. B. Dhinesh, M. Annamalai, Isaac JoshuaRamesh Lalvani, K. Annamalai. Studies on the influence of combustion bowl modification for the operation of Cymbopogon flexuosus biofuel based diesel blends in a DI diesel engine. Applied Thermal Engineering, 112(2017) 627-637. [CrossRef] [Google Scholar]
  3. Antony Raj Gnana Sagaya Raj, Jawali Maharudrappa Mallikarjuna, Venkitachalam Ganesan, Energy efficient piston configuration for effective air motion-a CFD study, Appl. Energy 102(2013) 347-354. [CrossRef] [Google Scholar]
  4. Hyun Kyu Suh, Chang Sik Lee, A review on atomization and exhaust emissions of a biodieselfueled compression ignition engine, Renew. Sustain. Energy Rev. 58(2016) 1601-1620. [CrossRef] [Google Scholar]
  5. Y. Kidoguchi, C. Yang, Effect of high squich combustion chamber on simultaneous reduction of NOx and particylate from a direct-injection diesel engine, SAE Technical paper (No. 1999-01-1502), 1999. [Google Scholar]
  6. Arun Kumar Wamankar, S. Murugan, Combustion, performance and emission characteristics of a diesel engine with internal jet piston using carbon blackwater-diesel emulsion, Energy 91(2015)1030-1037. [CrossRef] [Google Scholar]
  7. J. Li, W. M. Yang, H. An, A. Maghbouli, S.K. Chou, Effect of piston bowl geometry on combustion and emission characteristics of biodiesel fueled diesel engines, Fuel 120(2014) 66-73. [CrossRef] [Google Scholar]
  8. L. Lin, D. Shulin, X. Jin, W. Jinxiang, et al. Effects of Combustion Chamber Geometry on In-Cylinder Air Motion and Performance in DI Diesel Engine, SAE Technical Paper 2000-01-0510, 2000, [Google Scholar]
  9. S. Subramanian, B. Rathinam, J. Lalvani, K. Annamalai, Piston Bowl Optimization for Single Cylinder Diesel Engine Using CFD, SAE Technical Paper 2016-28-0107. [Google Scholar]
  10. Bang-Quan He, Advances in emission characteristics of diesel engines using different biodiesel fuels, Renew. Sustain. Energy Rev. 60(2016) 570-586. [CrossRef] [Google Scholar]
  11. V. Ganesan, Internal Combustion Engines, McGraw-Hill, 1996. [Google Scholar]
  12. S. Jaichandar, K. Annamalai, Effects of open combustion chamber geometries om the performance of Pongamia biodiesel in a DI diesel engine, Fuel 98 (2012)272-279. [CrossRef] [Google Scholar]
  13. B.V.V.S.U. Prasad, C.S. Sharma, T.N.C. Anand, R.V. Ravikrishna, High swirl-inducing piston bowls in small diesel engines for emission reduction, Appl. Energy 88 (2011) 2355-2367. [CrossRef] [Google Scholar]
  14. C.P. Abdul Gafoor, Rajesh Gupta, Numerical investigation of piston bowl geometry and swirl ratio on emission from diesel engines, Energy Convers. Manage. 101 (2015) 541-551. [CrossRef] [Google Scholar]
  15. Y. Zhu, H. Zhao, D.A. Melas, N, Ladommatos, Computational study of the effects of the geometry of piston l pip for a high-speed direct-injection diesel engine, Proc.IMechE, Part D: J. Automobile Eng. 218 (2004) 875-890. [CrossRef] [Google Scholar]
  16. B.R. Ramesh Bapu, L. Saravanakumar, B. Durga Prasad, Effects of combustion chamber geometry om combustion characteristics of a DI diesel engine fueled with calophylluminophyllum methyl ester, J. Energy Inst, (2015) 1-19. [Google Scholar]
  17. H. Sushma, Jagadeesha. K. B, CFD modeling of the in-cylinder flow in Direct-injection Diesel engine, International Journal of Scientific and Research Publications, Volume3, Issue12, December 2013 ISSN 2250-3153. [Google Scholar]
  18. Jaichandar S, Annamalai K. Influences of re-entrant combustion chamber geometry on the performance of Pongamia biodiesel in a DI diesel engine. Energy 2012; 44: 633-40. [CrossRef] [Google Scholar]
  19. Dolak J, Reitz R. Optimization of the piston geometry of a diesel engine using a two-spary-angle nozzle. Proc inst Mech Eng Pt D J Automobile Eng 2011; 225:406-21. [CrossRef] [Google Scholar]
  20. Raj A, Mallikarjuna JM, Ganesan V. Energy efficient piston configuration for effective air motion-A CFD study. Appl Energy 2013; 102: 347-54. [Google Scholar]
  21. Jaichandar S, Annamalai K. Effects of open combustion chamber geometries on the performance of pongamia biodiesel in a DI diesel engine. Fuel 2012; 98:272-9. [CrossRef] [Google Scholar]
  22. Dinech Kumar Soni, Rajesh Gupta. Numerical analysis of flow dynamics for two piston bowl designs at different spray angles. Journal of Cleaner Production 2017; 149: 723-734. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.