Open Access
Issue |
E3S Web Conf.
Volume 53, 2018
2018 3rd International Conference on Advances in Energy and Environment Research (ICAEER 2018)
|
|
---|---|---|
Article Number | 04023 | |
Number of page(s) | 4 | |
Section | Environmental Protection, Pollution and Treatment | |
DOI | https://doi.org/10.1051/e3sconf/20185304023 | |
Published online | 14 September 2018 |
- C. Niewersch, A.L.B. Bloch, S. Yüce, T. Melin, M. Wessling, Nanofiltration for the recovery of phosphorus-Development of a mass transport model, Desalination 346, 70-78 (2014) [CrossRef] [Google Scholar]
- Z. Ying, N. Yuikawa, H. Nakatsuka, H. Maekawa, S. Harashima, Y. Nakanishi, Y. Kaneko, Core regulatory components of the PHO pathway are conserved in the methylotrophic yeast Hansenula polymorpha, Curr. Genet. 62, 595-605 (2016) [CrossRef] [PubMed] [Google Scholar]
- M. Ikeh, Y. Ahmed, J. Quinn, Phosphate Acquisition and Virulence in Human Fungal Pathogens, Microorganisms 5, 48(2017) [CrossRef] [Google Scholar]
- K.K. Yadav, N. Singh, R. Rajasekharan, Responses to phosphate deprivation in yeast cells, Curr. Genet. 62, 301-307(2016) [CrossRef] [PubMed] [Google Scholar]
- E.M. Smith, Y.T. Prairie, Bacterial Metabolism and Growth Efficiency in Lakes: The Importance of Phosphorus Availability, Limnol. Oceanogr. 49, 137-147(2004) [CrossRef] [Google Scholar]
- M.A. Lachance, C.P. Kurtzman, J.W. Fell, V. Robert, J. Stalpers, T. Boekhout, M. Bolotin-Fukuhara, K. Boundy-Mills, F. Rodrigues, P. Ludovico, Biodiversity and Ecophysiology of Yeasts, (Springer Berlin Heidelberg, 2006) [Google Scholar]
- M. Yang, S. Zheng, Pollutant removal-oriented yeast biomass production from high-organicstrength industrial wastewater: A review, Biomass. Bioenerg. 64, 356-362 (2014) [CrossRef] [Google Scholar]
- I. Borodina, J. Nielsen, Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals, Biotech. J. 9, 609-620 (2014) [CrossRef] [Google Scholar]
- N. Jin, Y. Jin, L.S. Weisman, Early protection to stress mediated by CDK-dependent PI3, 5P2 signaling from the vacuole/lysosome, J. Cell. Biol. 216, 2075 (2017) [CrossRef] [PubMed] [Google Scholar]
- C. Auesukaree, T. Homma, H. Tochio, M. Shirakawa, Y. Kaneko, S. Harashima, Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae, J. Biol. Chem. 279, 17289-17294 (2004) [CrossRef] [PubMed] [Google Scholar]
- B.R. Watts, S. Wittmann, M. Wery, C. Gautier, K. Kus, A. Birot, D.H. Heo, C. Kilchert, A. Morillon, L. Vasiljeva, Histone deacetylation promotes transcriptional silencing at facultative heterochromatin, Nucleic Acids Res. 232 (2018) [Google Scholar]
- A. Toh-E, M. Ohkusu, H.M. Li, K. Shimizu, A. Takahashi-Nakaguchi, T. Gonoi, S. Kawamoto, Y. Kanesaki, H. Yoshikawa, M. Nishizawa, Identification of genes involved in the phosphate metabolism in Cryptococcus neoformans, Fungal Genet. Biol. 80, 19-30 (2015) [CrossRef] [PubMed] [Google Scholar]
- M. Kretschmer, E. Reiner, G. Hu, N. Tam, D.L. Oliveira, M. Caza, H.Y. Ju, J. Kim, C.J. Kastrup, W.H. Jung, Defects in Phosphate Acquisition and Storage Influence Virulence of Cryptococcus neoformans, Infect. Immun. 82, 2697-2712 (2014) [CrossRef] [PubMed] [Google Scholar]
- B.Z. He, X. Zhou, E.K. O'Shea, Evolution of reduced co-activator dependence led to target expansion of a starvation response pathway, Elife 6, (2017) [Google Scholar]
- K. Romanowski, A. Zaborin, V. Valuckaite, R.J. Rolfes, T. Babrowski, C. Bethel, A. Olivas, O. Zaborina, J.C. Alverdy, Candida albicans isolates from the gut of critically Ill patients respond to phosphate limitation by expressing filaments and a lethal phenotype, Plos One 7, e30119(2012) [CrossRef] [PubMed] [Google Scholar]
- E.V. Sambuk, A.Y. Fizikova, V.A. Savinov, M.V. Padkina, Acid phosphatases of budding yeast as a model of choice for transcription regulation research, Enzyme Res. 2011, 356093 (2011) [CrossRef] [PubMed] [Google Scholar]
- J.Y. Youn, H. Friesen, A.N. Nguyen Ba, W. Liang, V. Messier, M.J. Cox, A.M. Moses, B. Andrews, Functional Analysis of Kinases and Transcription Factors in Saccharomyces cerevisiae Using an Integrated Overexpression Library, G3 Genes. 7, 911-921 (2017) [Google Scholar]
- T. Watanabe, N. Ozaki, K. Iwashita, T. Fujii, H. Iefuji, Breeding of wastewater treatment yeasts that accumulate high concentrations of phosphorus, Appl. Microbiol. Biot. 80, 331-338 (2008) [CrossRef] [Google Scholar]
- A. Kaffman, I. Herskowitz, R. Tjian, E.K. O'Shea, Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85, Science 263, 1153-1156 (1994) [Google Scholar]
- A. Tohe, K. Tanaka, Y. Uesono, R.B. Wickner, PHO85, a negative regulator of the PHO system, is a homolog of the protein kinase gene, CDC28, of Saccharomyces cerevisiae, Mol. Gen. Genet. 214, 162-164 (1988) [CrossRef] [PubMed] [Google Scholar]
- K.R. Schneider, R.L. Smith, E.K. O'Shea, Phosphate-regulated inactivation of the kinase PHO80-PHO85 by the CDK inhibitor PHO81, Science 266, 122-126 (1994) [CrossRef] [Google Scholar]
- Y. Oshima, The phosphate system in Saccharomyces cerevisiae, Genes Genet. Syst. 72, 323-334 (1998) [CrossRef] [Google Scholar]
- T. Watanabe, K. Masaki, K. Iwashita, T. Fujii, H. Iefuji, Treatment and phosphorus removal from high-concentration organic wastewater by the yeast Hansenula anomala J224 PAWA, Bioresour. Technol. 99, 1781-1785 (2009) [CrossRef] [Google Scholar]
- G.J.J. Kortstee, M.C.M.V. Loosdrecht, Inorganic Polyphosphates (Springer Berlin Heidelberg, 2005) [Google Scholar]
- I.S. Kulaev, V.M. Vagabov, T.V. Kulakovskaya, The biochemistry of inorganic polyphosphates, Ergebn. Physiol. 73, 131-158 (2005) [Google Scholar]
- L. Lichko, T. Kulakovskaya, N. Pestov, I. Kulaev, Inorganic polyphosphates and exopolyphosphatases in cell compartments of the yeast Saccharomyces cerevisiae under inactivation of PPX1 and PPN1 genes, Biosci Rep. 26, 45-54 (2006) [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.