Open Access
Issue
E3S Web Conf.
Volume 53, 2018
2018 3rd International Conference on Advances in Energy and Environment Research (ICAEER 2018)
Article Number 04026
Number of page(s) 4
Section Environmental Protection, Pollution and Treatment
DOI https://doi.org/10.1051/e3sconf/20185304026
Published online 14 September 2018
  1. T. Kuba, M. C. M. V. Loosdrecht and J. J. Heijnen, Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system Water Res. 30 1702(2016) [CrossRef] [Google Scholar]
  2. C. O'neill, F. R. Hawkes, D. L. Hawkes, S. Esteves and S. J. Wilcox, Anaerobic-aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye Water Res. 34 2355(2000) [CrossRef] [Google Scholar]
  3. P. Yang, Test Technology of Biochemical Trait for Industrial Effluent Chem Eng. (2002) [Google Scholar]
  4. W. Han, Feasibility Study on the Assessing Approaches of Wasterater's Biodegradability Jiang Su Environ Sci & Technol (2004) [Google Scholar]
  5. Y. Tong and P. L. Bishop Stratification of microbial metabolic processes and redox potential change in an aerobic biofilm studied using microelectrodes WATER Sci& Technol 37 195(1998) [Google Scholar]
  6. M. I. Beydilli, S. G. Pavlostathis and W. C. Tincher, Biological Decolorization of the Azo Dye Reactive Red 2 under Various Oxidation-Reduction Conditions Water Environ. Res. 72 698(2000) [CrossRef] [Google Scholar]
  7. O'neill C., A. Lopez, S. Esteves, F. R. Hawkes, D. L. Hawkes and S. Wilcox, Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent Appl Micrebiol Biot 53249(2000) [CrossRef] [Google Scholar]
  8. K. C. A. Bromley-Challenor, J. S. Knapp, Z. Zhang, N. C. C. Gray, M. J. Hetheridge and M. R. Evans, Decolorization of an azo dye by unacclimated activated sludge under anaerobic conditions Water Res. 34 4410(2000) [CrossRef] [Google Scholar]
  9. C. W. Lee, S. D. Bae, S. W. Han and L. S. Kang Application of ultrafiltration hybrid membrane processes for reuse of secondary effluent DESALINATION 202 239(2007) [CrossRef] [Google Scholar]
  10. J. Arévalo, G. Garralón, F. Plaza, B. Moreno, J. Pérez and M. Á. Gómez, Wastewater reuse after treatment by tertiary ultrafiltration and a membrane bioreactor (MBR): a comparative study DESALINATION 243 32(2009) [CrossRef] [Google Scholar]
  11. S. Wang, J. Ma, B. Liu, Y. Jiang and H. Zhang, Degradation characteristics of secondary effluent of domestic wastewater by combined process of ozonation and biofiltration J Hazard Mater 150109(2008) [CrossRef] [Google Scholar]
  12. A. M Yang., J. Chang, Y. P. Gan, Y. Z. Peng, S. J. Zhang and C. L. Meng, Research on the organic biodegradability of secondary effluent treated by ozonation Environ Sci 31 363(2010) [Google Scholar]
  13. H. J. H. Fenton LXXIII.-Oxidation of tartaric acidinpresence of iron J Chem Soc T 65 899 [Google Scholar]
  14. E. Neyens and J. Baeyens, A review of classic Fenton's peroxidation as an advanced oxidation technique J Hazard Mater 98 33(2003) [CrossRef] [Google Scholar]
  15. C. Longzhe, Research on the treatment of hard degradation organic in fermantative wastewaterby UV/O3 catalytic oxidation Elect Power Environ Prot (2004) [Google Scholar]
  16. N. D. L. Cruz, R. F. Dantas, J. Giménez and S. Esplugas, Photolysis and TiO2 photocatalysis of the pharmaceutical propranolol: Solar and artificial light Applied Catal B Environ 130 249(2013) [CrossRef] [Google Scholar]
  17. Y. Segura, F. Martínez, J. A. Melero, R. Molina, R. Chand and D. H. Bremner, Enhancement of the advanced Fenton process (Fe0/H2O2) by ultrasound for the mineralization of phenol Applied Catal B Environ 113-114 100(2012) [CrossRef] [Google Scholar]
  18. D. Hou, R. Goei, X. Wang, P. Wang and T. T. Lim, Preparation of carbon-sensitized and Fe-Er codoped TiO 2 with response surface methodology for bisphenol A photocatalytic degradation under visible-light irradiation Applied Catal B Environ 126121(2012) [CrossRef] [Google Scholar]
  19. C. Ming, K. Tian and L. Zhu, Pretreatment of cartap pesticide wastewater by Fenton reagent Chin J Environ Eng 8 5135(2014) [Google Scholar]
  20. A. Palaand G. Erden, Chemical Pretreatment of Landfill Leachate Discharged into Municipal Biological Treatment Systems Environ. Eng. Sci. 21549(2004) [CrossRef] [Google Scholar]
  21. H. Tekin, O. Bilkay, S. S. Ataberk, T. H. Balta, I. H. Ceribasi, F. D. Sanin, F. B. Dilek and U. Yetis, Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater J Hazard Mater 136258(2006) [CrossRef] [Google Scholar]
  22. A. Fujishima and K. Honda, Electrochemical photocatalysis of water at semiconductor electrode NATURE 238 (1972) [Google Scholar]
  23. F. Yan, G. Xiao and W. Pan, Treatment of landfill leachate by coupling system of titanium dioxide and ultrasonic Chin J Environ Eng 4 383(2010) [Google Scholar]
  24. S. Parra, S. Malato and C. Pulgarin New integrated photocatalytic-biological flow system using supported TiO and fixed bacteria for the mineralization of isoproturon Appl Catal B Environ 36 131(2002) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.