Open Access
Issue
E3S Web Conf.
Volume 56, 2018
VII International Scientific Conference “Problems of Complex Development of Georesources” (PCDG 2018)
Article Number 03027
Number of page(s) 7
Section Problems of Complex Processing of Mineral Raw Materials and New Technologies of Mineral Processing
DOI https://doi.org/10.1051/e3sconf/20185603027
Published online 26 September 2018
  1. Verhoturov A. D., Babenko E. G., Makienko V. M. Metodologiya sozdaniya svarochnyh materialov [Methodology for production of weld materials] / Edited by Corresponding Member of the Russian Academy of Science Voronov B.A. - Khabarovsk, FESTU Publ. 128 p. (2009) [Google Scholar]
  2. Lashchenko G.I. Kombinirovannye tehnologii svarki plavleniem [Combined technologies for fusion welding] // Avtomaticheskaya svarka [Automated welding]. 8. (2012) [Google Scholar]
  3. Saraev Y.N., Lebedev V.A., Novikov S.V. Mashinostroenie [Engineering Industry]. 4 (1). pp. 16-2634. (2016) [Google Scholar]
  4. Matsunawa A., Mizutani M., Katayama S., Seto N. Po-rosity formation mechanism and its prevention in laser welding, Welding International. 17(6). 431-437. (2003) [CrossRef] [Google Scholar]
  5. Rykalin N.N. Raschety teplovyh poley pri svarke [Calculation of thermal fields under welding], Moscow, Mashgiz Publ. 296 p. (1951) [Google Scholar]
  6. Y.G. Gagen, V.D. Taran Svarka magnitoupravlyaemoi dugoi [Magnetically operated arc welding]. Moscow, Mashinostroenie Publ. 160 p. (1970) [Google Scholar]
  7. Goldak J., Chakravarti A., Bibby M. A new finite element model for welding heat source//Metallurgical Transactions B. 15B. P. 299-305. (1984) [CrossRef] [Google Scholar]
  8. Nguyen. N.T., Mai Y.-W., Simpson S. and Ohta A.. Analytical approximate solution for double ellipsoidal heat source in finite thick plate//Welding Journal. 3. P.82-s-93-s. (2004) [Google Scholar]
  9. Sabapathy P.N., Wahab M.A., Painter M.J.: Numerical methods to predict failure during the in-service welding of gas pipelines//Journal of Strain Analysis. 36 (6). P. 611-619. (2001) [CrossRef] [Google Scholar]
  10. Zhang J. and Dong Y. Method for determining a heat source model for a weld. US Patent No 6,324,491 B1. 2001. [Google Scholar]
  11. Goldak J. et al. Computer Modeling of heat flow in welds// Metallurgical Transactions B. 17B. pp. 587-600. (1986) [CrossRef] [Google Scholar]
  12. Ranatowski E., Pocwiardowski A. An analytical-numerical evaluation of the thermal cycle in the HAZ during welding', Mathematical Modelling of Weld Phenomena 4, H. Cerjak (ed.), IOM Communications Ltd, London. pp. 379-395. (1998) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.