Open Access
E3S Web Conf.
Volume 57, 2018
2018 3rd International Conference on Sustainable and Renewable Energy Engineering (ICSREE 2018)
Article Number 04004
Number of page(s) 6
Section Construction and Energy
Published online 05 October 2018
  1. J. N. C. Hin and R. Zmeureanu, “Optimization of a residential solar combisystem for minimum life cycle cost, energy use and exergy destroyed,” Sol. Energy, 100, 102–113 (2014) [CrossRef] [Google Scholar]
  2. R. Bornatico, M. Pfeiffer, A. Witzig, and L. Guzzella, “Optimal sizing of a solar thermal building installation using particle swarm optimization,” Energy, 41, 31–37(2012) [CrossRef] [Google Scholar]
  3. A. Rey and R. Zmeureanu, “Multi-objective optimization of a residential solar thermal combisystem,” Sol. Energy, 139, 622–632 (2016) [CrossRef] [Google Scholar]
  4. P. D. Lund, “Sizing and applicability considerations of solar combisystems,” Sol. Energy, 78, 59–71 (2005) [CrossRef] [Google Scholar]
  5. U. Jordan and K. Vajen, “Influence Of The DHW Load Profile On The Fractional Energy Savings:: A Case Study Of A Solar Combi-System With TRNSYS Simulations,” Sol. Energy, 69, 197–208 (2001) [CrossRef] [Google Scholar]
  6. M. Loomans and H. Visser, “Application of the genetic algorithm for optimisation of large solar hot water systems,” Sol. Energy, 72, 427–439 (2002) [CrossRef] [Google Scholar]
  7. M. Krause, K. Vajen, F. Wiese, and H. Ackermann, “Investigations on optimizing large solar thermal systems,” Sol. Energy, 73, 217–225 (2002) [CrossRef] [Google Scholar]
  8. A. Zarrabi, E. K. Karuppiah, Y. K. Kok, N. C. Hai, and S. See, “Gravitational Search Algorithm Using CUDA,” in 2014 15th International Conference on Parallel and Distributed Computing, Applications and Technologies, 193–198 (2014) [Google Scholar]
  9. M. A. Rodriguez and R. Buyya, “Deadline Based Resource Provisioningand Scheduling Algorithm for Scientific Workflows on Clouds,” IEEE Trans. Cloud Comput., 2, 222–235(2014) [CrossRef] [Google Scholar]
  10. K. F. Man, K. S. Tang, and S. Kwong, “Genetic algorithms: concepts and applications [in engineering design],” IEEE Trans. Ind. Electron., 43, 519–534, (1996) [CrossRef] [Google Scholar]
  11. R. J. Aguiar, M. Collares-Pereira, and J. P. Conde, “Simple procedure for generating sequences of daily radiation values using a library of Markov transition matrices,” Sol. Energy, 40, 269–279(1988) [CrossRef] [Google Scholar]
  12. E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf. Sci. (Ny)., 179, 2232–2248(2009) [CrossRef] [Google Scholar]
  13. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural Networks, 1995. Proceedings., IEEE International Conference on, 4, 1942–1948 (1995) [Google Scholar]
  14. A. Kant, A. Sharma, S. Agarwal, and S. Chandra, “Swarm, Evolutionary, and Memetic Computing: First International Conference on Swarm, Evolutionary, and Memetic Computing, SEMCCO 2010, Chennai, India, December 16-18, 2010. Proceedings,” B. K. Panigrahi, S. Das, P. N. Suganthan, and S. S. Dash, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 286–295 (2010) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.