Open Access
Issue
E3S Web Conf.
Volume 60, 2018
Ukrainian School of Mining Engineering
Article Number 00003
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/20186000003
Published online 16 October 2018
  1. Vivcharenko, O. (2012). Development of coal industry of Ukraine in the context of contemporary challenges. Geomechanical Processes During Underground Mining: School of Underground Mining 2012, 1–5. https://doi.org/10.1201/b13157-2 [Google Scholar]
  2. Pivnyak, G.G., Pilov, P.I., Bondarenko, V.I., Surgai, N.S., Tulub, S.B. (2005). Development of coal industry: The part of the power strategy in the Ukraine. Gornyi Zhurnal, (5), 14–17. [Google Scholar]
  3. Roytman, V.N. (2001). Inzhenerne resheniya po otsenke ognestoykosti proyektiruyemykh i rekonstruiruyemykh zdaniy. Moskva: Assotsiatsiya “Pozharnaya bezopasnost’ i nauka”. [Google Scholar]
  4. Fomin, S.L., & Astakhov, A.A. (2010). Ognestoykost’ fragmenta bezrigel’nogo karkasnogo monolitnogo zdaniya. Naukovyi visnyk budivnytstva, (61), 122–130. [Google Scholar]
  5. Vasil’chenko, A.V. (2010). Otsenka predela ognestoykosti zhelezobetonnykh plit perekrytiya s ognezashchitnym pokrytiem. Problemy pozharnoy bezopasnosti, (27), 45–48. [Google Scholar]
  6. Rubini. P. (2000). SOFIE – Simulation of Fires in Enclosures. V 3.0 Users guide. School of Mechanical Engineering, Granfield University (UK). [Google Scholar]
  7. Bek Dzh., V., Blakuell, B., & Sent-Kler, Ch. (1989). Nekorrektnye obratnye zadachi teploprovodnosti. Moskva: Mir. [Google Scholar]
  8. Lie, T.T. (1974). Characteristic temperature curves for various fire severities. Fire Tachnol, 10(4), 315–326. [CrossRef] [Google Scholar]
  9. Krukovsky, P. (2005). Fire Safety Analysis for new Safe confinement’s Building Constructions of Chernobyl NPP. In V Międzunarodova Konferencja “Bezpieczeństwo pońarowe budowli” (pp. 223–227). Warszawa: Instytut Techniki Budowlanej. [Google Scholar]
  10. DSTU B V.1.1-4-98. (1999). Zakhyst vid pozhezhi. Budivelni konstruktsii. Metody vyprobuvannia na vohnestiykist. Zahalni vymohy. Kyiv: Ukrarkhbudinform. [Google Scholar]
  11. DSTU B V.1.1-20:2007. (2007). Zakhyst vid pozhezhi. Perekryttia ta pokryttia. Metod vyprobuvannia na vohnestiikist. Kyiv: Ministerstvo rehionalnoho rozvytku ta budivnytstva Ukrainy. [Google Scholar]
  12. Kovalov, A.I., Kachkar, Ye.V, & Zobenko, N.V. (2014). Eksperymentalne doslidzhennia vohnezakhysnoi zdatnosti pokryttia “Amotherm Steel Wb” pry temperaturnomu rezhymovi vuhlevodnevoi pozhezhi. Pozhezhna bezpeka: teoriia i praktyka, (17), 53–60. [Google Scholar]
  13. EN 1992-1-2: 2004. (2004). Eurocode 2: Design of concrete structures. Part 1-2: General rules. Structural fire design. Brussels: The European Union Per Regulation. [Google Scholar]
  14. Kovalev, A.I. (2012). Usovershenstvovanie metoda otsenki ognezashchitnoy sposobnosti pokrytiy zhelezobetonnykh perekrytiy. Ph.D. Ukrainskiy NII grazhdanskoy zashchity MChS Ukrainy. [Google Scholar]
  15. Sundstrom, B. (2005). Test Methods and Their use for Fire Safety Engineering. In V Międzunarodova Konferencja “Bezpieczeństwo pońarowe budowli” (pp. 141–150). Warszawa: Instytut Techniki Budowlanej. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.