Open Access
Issue
E3S Web Conf.
Volume 60, 2018
Ukrainian School of Mining Engineering
Article Number 00017
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/20186000017
Published online 16 October 2018
  1. Ataei, M., Jamshidi, M., Sereshki, F., & Jalali I. (2008). S.M.E. Mining method selection by AHP approach. Journal of the Southern African Institute of Mining and Metallurgy, 108(12), 741–749. [Google Scholar]
  2. Mikaeil, R., Naghadehi, M., Ataei, M., & Khalokakaie, R. (2009). A decision support system using fuzzy analytical hierarchy process (FAHP) and TOPSIS approaches for selection of the optimum underground mining method. Archives of Mining Sciences, 54(2), 349–368. [Google Scholar]
  3. Saaty, T., & Shang, J. (2011). An innovative orders – of-magnitude approach to AHP-based Mutli-criteria decision making: Prioritizing divergent intangible humane acts. European Journal of Operational Research, 214(3), 703–715. http://dx.doi.org/10.1016/j.ejor.2011.05.019 [CrossRef] [Google Scholar]
  4. Dehghani, H., Siami, A., & Haghi, P. (2017). A new model for mining method selection based on grey and TODIM methods. Journal of Mining & Environment, 8(1), 49–60. http://dx.doi.org/10.22044/JME.2016.626 [Google Scholar]
  5. Tzeng, G., & Huang, J. (2011). Multiple attribute decision making: Methods and applications. Boca Raton, FL, USA: Chapman and Hall/CRC Press. [Google Scholar]
  6. Wang, Ch., Tu, Sh., Zhang, L., Yang, Q., & Tu, H. (2015). Auxiliary transportation mode in a fully-mechanized face in a nearly horizontal thin coal seam. International Journal of Mining Science and Technology, 25(6), 963–968. https://doi.org/10.1016/j.ijmst.2015.09.013 [CrossRef] [Google Scholar]
  7. Zhang, J. & Wang, Zh. (2012). The selection of coal strategic suppliers to the electric power enterprises based on cooperative game. China Coal, 3(4), 230–240. [Google Scholar]
  8. Opricovic, S., & Tzeng, G.-H. (2007) Extended VIKOR method in comparison with outranking methods. European Journal of Operational Research, 178(2), 514–529. https://doi.org/10.1016/j.ejor.2006.01.020 [CrossRef] [Google Scholar]
  9. Grujic, M., & Tomasevic, A. (1996). Choice of outside transportation system in underground coal mines by multiple criteria analysis. Underground Mining Engineering, 4(1), 62–70. [Google Scholar]
  10. Vujić, S., Miljanović, I., Milutinović, A., Đorđević, D., Gojković, N., & Gajićet, G. (2011). Multiattributive prediction of terrain stability above underground mining operations. Yugoslav Journal of Operations Research, 21(2), 275–291. https://doi.org/10.2298/YJOR1102275V [CrossRef] [Google Scholar]
  11. Nazymko, V.V. (2013). Pytannia pobudovy systemy avtomatyzovanoho upravlinnia proektom. Upravlinnia rozvytkom sklatnykh system, (14), 61–67. [Google Scholar]
  12. Zakharova, L.N., & Nazymko, V.V. (2012). Doslidzhennia chutlyvosti prohramy rozvytku hirnychykh robit ta yii ryzykiv v umovakh vuhilnoi shakhty. Radioelektronni i kompiuterni systemy, 53(1), 157–164. [Google Scholar]
  13. Iphar, M., & Alpay, S. (2018) A mobile application based on multi-criteria decision-making methods for underground mining method selection. International Journal of Mining, Reclamation and Environment, 126(3), 69–77. https://doi.org/10.1080/17480930.2018.1467655 [Google Scholar]
  14. Bogdanovic, D., Nikolic, D., & Ilic, I. (2012). Mining method selection by integrated AHP and PROMETHEE method. Anais da Academia Brasileira de Ciências, 84(1), 219–233. http://dx.doi.org/10.1590/S0001-37652012000100023. [Google Scholar]
  15. Grinev, V., Cherepovskiy, P. & Deulenko, A. (2014). Tekhnologicheskiy aspekt formirovaniya ob’ema dobychi uglya s pozitsyi rynochnykh modeley. Fiziko-tekhnicheskie problemy gornogo proizvodstva, (17), 117–125. [Google Scholar]
  16. Grinev, V. (2016). Grafy i seti dlya vybora gorno-shahtnogo oborudovaniya. Dnipro: Porogy. [Google Scholar]
  17. Khorolskyi, A.A., Grinov, V.G., & Synkov, V.G. (2016). Vybir kompleksiv hirnycho-shakhtnoho obladnannia na osnovi teorii hrafiv. Visnyk Natsionalnoho Tekhnicnoho Universytetu Ukrainy “Kyivskyi Politekhnicnyi Instytut”, (31), 57–64. https://doi.org/10.20535/2079-5688.2016.31.69892 [Google Scholar]
  18. Fioroni, M., Santos, Letícia, C., Franzese, L., Seixas, J., Penna, B., & Alkmim, G. (2014). Logistic evaluation of an underground mine using simulation. Rem: Revista Escola de Minas, 67(4), 447–454. https://dx.doi.org/10.1590/0370-44672014670181 [CrossRef] [Google Scholar]
  19. Brazil, M., Thomas, D.A., & Weng, J.F. (2005). Cost Optimization for Underground Mining Networks. Optimization and Engineering, 6(2), 241–256. https://doi.org/10.1007/s11081-0056797-x [CrossRef] [Google Scholar]
  20. Guang. X., Jinxin, H., Baisheng, N., Chalmers, D. & Zhuoming, Y. (2017). Calibration of Mine Ventilation Network Models Using the Non-Linear Optimization Algorithm. Energy, 31(11), 11–19. https://doi.org/10.3390/en11010031 [Google Scholar]
  21. Amankwah, H. (2011). Mathematical Optimization Models and Methods for Open-Pit Mining. Ph.D. Linköping University. [Google Scholar]
  22. Shi, Q., & Erhan, K. (2016). New graph-based algorithms to efficiently solve large scale open pit mining optimization problems. Expert Systems with Applications, 43(1), 59–65. https://doi.org/10.1016/j.eswa.2015.08.044 [CrossRef] [Google Scholar]
  23. Vladyko, O., Kononenko, M., & Khomenko, O. (2012). Imitating modeling stability of mine workings. Geomechanical Processes During Underground Mining: School of Underground Mining 2012, 147–150. https://doi.org/10.1201/b13157-26 [CrossRef] [Google Scholar]
  24. Kirsch, U. (1981). Optimum Structural Design: Concepts, Methods and Applications. New York: McGraw-Hill. [Google Scholar]
  25. Blauberg, I.V., Sadovskiy, V.N., & Yudin, E.G. (1978). Filosofskiy printsyp sistemnosti sistemnyy podkhod. Voprosy filosofii, (8), 39–52. [Google Scholar]
  26. O’Connor, J., & Mc Dermott, I. (1997). The art of systems thinking: essential skills for creativity and problem solving. London: Thorsons. [Google Scholar]
  27. Pidd, M. (2004). Systems Modelling: Theory and Practic. West Sussex: Wiley. [Google Scholar]
  28. Grinev, V.G. & Khorolskiy, A.A. (2017). Obosnovanie parametrov vybora komplektatsii ochistnogo oborudovaniya s uchetom oblasti ratsional’noy ekspluatatsii. Visti Donetskoho Hirnuchoho Instytutu, 40(1), 139–144. [Google Scholar]
  29. Khorolskiy, A.A. & Grinev, V.G. (2018). Setevye modeli kak instrument povysheniya organizatsionno-tekhnologicheskoy nadezhnosti proizvodstva. In Innovative Technologies in Education, Science and Production. Minsk: Belarusian National Technical University. https://rep.bntu.by/handle/data/36360 [Google Scholar]
  30. Khorolskyi, A.A., & Hrinov, V.G. (2017). Systemni pryntsypy ta otsinochni kryterii nadiinosti pry optymizatsii tekhnolohichnykh skhem vuhilnykh rodovyshch. Visnyk Zhytomyrskoho Derzhavnoho Tekhnolohichnoho Universytetu, 80(2), 225–233. https://doi.org/10.26642/tn-20172(80)-225-233 [Google Scholar]
  31. Mamaikin, O.R. (2014). Obhruntuvannia parametriv tekhnolohichnykh skhem antratsytovykh shakht dlia ikh adaptatsii do innovatsii. Ph.D. Natsionalnyi hirnychyi universytet. [Google Scholar]
  32. Brazil, M., & Thomas, D. (2007). Network optimization for the design of underground mines. Networks, 49(1), 40–50. https://doi.org/10.1002/net.20140 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.