Open Access
E3S Web Conf.
Volume 63, 2018
Seminary on Geomatics, Civil and Environmental Engineering (2018 BGC)
Article Number 00005
Number of page(s) 6
Published online 14 November 2018
  1. D.R. Maidment, Handbook of hydrology, McGraw-Hill (1992) [Google Scholar]
  2. S. Eslamian, Handbook of engineering hydrology: fundamentals and applications, CRC Press, Taylor and Francis NY (2014) [Google Scholar]
  3. W. Szpakowski and M. Szydłowski, Evaluating the Catastrophic Rainfall of 14 July 2016 in the Catchment Basin of the Urbanized Strzyza Stream in Gdańsk, Polish Journal of Environmental Studies, 27, 2, pp. 861-869, (2018). DOI: 10.15244/pjoes/75962 [CrossRef] [Google Scholar]
  4. M. Szydłowski, et al.., Stormwater and snowmelt runoff storage control and flash flood hazard forecasting in the urbanized coastal basin, in Proc. of 14th International Symposium Water Management and Hydraulic Engineering WMHE 2015, pp. 141-150 (2015) [Google Scholar]
  5. P. Wielgat and P. Zima, Analysis of the impact of the planned sewage discharge from the 'North' Power Plant on the Vistula water quality, in Proc. of 16th International Multidisciplinary Scientific GeoConference SGEM 2016, book 3, vol. 3, pp. 19-26 (2016). DOI: 10.5593/SGEM2016/HB33/S02.003 [Google Scholar]
  6. P. Zima, Modeling of the Two-Dimensional Flow Caused by Sea Conditions and Wind Stresses on the Example of Dead Vistula, Polish Maritime Research, 25, s1, pp. 166-171 (2018). DOI: 10.247/pomr-2018-0038 [CrossRef] [Google Scholar]
  7. T. Kolerski, Modeling of ice phenomena in the mouth of the Vistula River, Acta Geophysica, 62, 893-914 (2014). DOI:10.2478/s11600-014-0213-x [CrossRef] [Google Scholar]
  8. T. Kolerski, Ice cover progression due to flow regulation at the Wloclawek dam, Acta Scientiarum Polonorum. Formatio Circumiectus, 14, 229-240 (2015) [CrossRef] [Google Scholar]
  9. J.G. Arnold, N. Fohrer, SWAT2000: Current capabilities and research opportunities in applied watershed modelling, Hydrological Processes, 19, 3, pp. 563-572, (2005). DOI: 10.1002/hyp.5611 [CrossRef] [Google Scholar]
  10. J.G. Arnold, et al.., Soil and Water Assessment Tool input/output file documentation: Version 2012, Texas Water Resources Institute, TR-439, (2012) [Google Scholar]
  11. R. Srinivasan, et al.., Large area hydrologic modeling and assessment part II: model application, Journal of the American Water Resources Association, 34 (1), pp. 91-101, (1998). DOI: 10.1111/j.1752-1688.1998.tb05962.x [CrossRef] [Google Scholar]
  12. T.K.Tesfa, et al.., Extraction of hydrological proximity measures from DEMs using parallel processing, Environmental Modelling & Software, 26 (12), pp. 1696-1709, (2011). DOI: 10.1016/j.envsoft.2011.07.018 [CrossRef] [Google Scholar]
  13. J.P. Wilson, Digital terrain modeling, Geomorphology, 137, 1, pp. 107-121 (2012). DOI: 10.1016/j.geomorph.2011.03.012 [CrossRef] [Google Scholar]
  14. Y.T. Dile, et al.., Introducing a new open source GIS user interface for the SWAT model, Environmental Modelling & Software, 85, pp. 129-138 (2016). DOI: 10.1016/j.envsoft.2016.08.004 [Google Scholar]
  15. D.G. Tarboton, A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources Research, 33, 2, pp. 309-319 (1997). DOI: 10.1029/96WR03137 [CrossRef] [Google Scholar]
  16. K. Bobkowska, A. Inglot, M. Mikusova, P. Tysiąc, Implementation of Spatial Information for Monitoring and Analysis of the Area Around the Port Using Laser Scanning Techniques, Polish Maritime Research, 24, S1, pp. 10-15 (2017). DOI: 10.1515/pomr-2017-0015 [CrossRef] [Google Scholar]
  17. K. Bobkowska, A. Janowski, J. Szulwic, 3D modelling of cylindrical-shaped objects from LiDAR data - an assessment based on theoretical modelling and experimental data, Metrology and Measurement Systems, Vol. 25, issue 1, pp. 47-56, 2018. DOI: 10.24425/118156 [Google Scholar]
  18. A. Inglot, P. Tysiąc, Airborne Laser Scanning Point Cloud Update by Used of the Terrestrial Laser Scanning and the Low-Level Aerial Photogrammetry, Proceedings - 2017 Baltic Geodetic Congress (Geomatics), BGC Geomatics 2017, pp. 34-38 (2017). DOI: 10.1109/BGC.Geomatics.2017.75 [CrossRef] [Google Scholar]
  19. J. Szulwic, P. Ziolkowski, A. Janowski, Combined Method of Surface Flow Measurement Using Terrestrial Laser Scanning and Synchronous Photogrammetry, Proceedings - 2017 Baltic Geodetic Congress (Geomatics), BGC Geomatics 2017, pp. 110-115 (2017). DOI: 10.1109/BGC.Geomatics.2017.54 [Google Scholar]
  20. D. Potrykus, et al.., Assessing groundwater vulnerability to pollution in the Puck region (denudation moraine upland) using vertical seepage method, E3S Web of Conferences. 44, 00147 (2018). DOI 10.1051/e3sconf/20184400147 [CrossRef] [EDP Sciences] [Google Scholar]
  21. Jr.A.T. Hjelmfelt, Investigation of curve number procedure, Journal of Hydraulic Engineering, 117, pp. 725-737 (1991). DOI: 10.1061/(ASCE)0733-9429(1991)117:6(725) [CrossRef] [Google Scholar]
  22. SCS: National Engineering Handbook, Section 4: Hydrology, Soil Conservation Service, USDA, Washington, D.C. (2004) [Google Scholar]
  23. K. Weinerowska-Bords, Development of Local IDF-formula Using Controlled Random Search Method for Global Optimization, Acta Geophysica, 63, 1, pp 232-274, (2015). DOI 10.2478/s11600-014-0242-5 [CrossRef] [Google Scholar]
  24. W. A. Scharffenberg and M. J. Fleming, Hydrologic Modeling System HEC - HMS User's Manual (2010) [Google Scholar]
  25. HEC-HMS Technical Reference Manual, US Army Corps of Engineers Hydrologic Engineering Center, USA (2000) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.