Open Access
E3S Web Conf.
Volume 64, 2018
2018 3rd International Conference on Power and Renewable Energy
Article Number 01002
Number of page(s) 5
Section Renewable Energy and Clean Energy
Published online 27 November 2018
  1. Indústria Brasileira de Árvores - IBÁ. Relatório Anual IBÁ 2017. Brasília, 2017. [Google Scholar]
  2. Reddy, S.N.; Nanda, S.; Dalai, A.K.; Kozin, J.A. Supercritical water gasification of biomass for hydrogen production. International Journal of Hydrogen Energy, v. 39, p. 6912-6926, 2014. [Google Scholar]
  3. Hernández, J.J.; Ballesteros, R.; Aranda, G. Characterisation of tars from biomass gasification: Effect of the operating conditions. Energy, v. 50, p. 333-342, 2013. [CrossRef] [Google Scholar]
  4. Dudynski, M.; Van Dyk, J.; Kwiatkowski, K.; Sosnawska, M. Biomass gasification: Influence of torrecation on syngas production and tar formation. Fuel Processing Technology, v. 131, p. 203-212, 2015. [CrossRef] [Google Scholar]
  5. Devi L, Ptasinski KJ, Janssen FJJG. A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy, v. 24, 2003. [Google Scholar]
  6. Kruse, A. Hydrothermal biomass gasification. The journal of supercritical fluids, n. 47, p. 391-399, 2009. [Google Scholar]
  7. Behenia, I. Treatment of aqueous biomass and waste via supercritical water gasification for the production of CH4 and H2. 2013. 108f. University of Western Ontario London. Ontário-Canadá, 2013. [Google Scholar]
  8. Elliot, D.C. Catalytic hydrothermal gasification of biomass. Biofuels Bioproducts and Biorefining 2 (3), p. 254-65, 2008. [CrossRef] [Google Scholar]
  9. Guo,Y., Wang, S. Z., Xu, D. H., Gong, Y. M., Ma, H. H., Tang, X. Y. Review of catalytic supercritical water gasification for hydrogen production from biomass. Renewable and Sustainable Energy Reviews, v. 14, p. 334-343, 2010. [CrossRef] [Google Scholar]
  10. Borges, A. C. P.; Alves, C. T.; Torres, E. A.. Torrefied Eucalyptus Grandis Characterization as a Biomass to Using in Industrial Scale. Chemical Engineering Transactions, v. 49, p. 283-288, 2016. [Google Scholar]
  11. Borges, A. C. P.; Alves, C. T. ; Fiuza, R. ; Andrade, H. M. C. ; Ingram, A. ; Vieira de Melo S.A.B.; Torres, E. A.. Preparation of heterogeneous catalysts by combustion reaction for water gas shift reaction. In: IMRC 2017 - XXVI International Materials Research Congress, 2017, Cancun. XXVI International Materials Research Congress, 2017. [Google Scholar]
  12. Muangrat, R.; Onwudili, J.A.; Williams, P.T. Influence of alkali catalysts on the production of hydrogen-rich gas from the hydrothermal gasification of food processing waste. Applied Catalysis B: Environmental v. 100, p. 440–449, 2010. [CrossRef] [Google Scholar]
  13. Hao XH, Guo LJ, Mao X, Zhang XM, Chen XJ. Hydrogen production from glucose used as model compound of biomass gasified in supercritical water. Int J Hydrogen Energy v. 28, p. 55-64, 2003. [Google Scholar]
  14. Onwudili JA, Williams PT. Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass. International journal of hydrogen energy, v. 34, p. 5645-5656, 2009. [Google Scholar]
  15. Kruse A, Gawlik A. Biomass conversion in water at 330-410 ºC and 30-50 MPa identification of key compounds for indicating different chemicals reaction pathways. Ind Eng Chem Res, v. 42, p. 267-279, 2003. [Google Scholar]
  16. Elliot, D.C., Sealock, LjJr, Baker, E.G. Chemical processing in high-pressure aqueous environments. Development of catalyst for gasification. Industrial & Engineering Chemistry Reasearch, v. 32 (8), p. 1542-1548, 1993. [CrossRef] [Google Scholar]
  17. Waldner, M.H; Vogel, F. Renewable production of methane from woody biomass by catalytic hydrothermal gasification. Industrial & Engineering Chemistry Research, v. 44 (13), p. 4543-4551 2005. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.