Open Access
Issue
E3S Web Conf.
Volume 64, 2018
2018 3rd International Conference on Power and Renewable Energy
Article Number 08001
Number of page(s) 5
Section Power System and Energy
DOI https://doi.org/10.1051/e3sconf/20186408001
Published online 27 November 2018
  1. M. S. Al-Musaylh, R. C. Deo, J. F. Adamowski, and Y. Li, “Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia,” Advanced Engineering Informatics, vol. 35, pp. 1-16, 2018. [CrossRef] [Google Scholar]
  2. M. S. Al-Musaylh, R. C. Deo, Y. Li, and J. F. Adamowski, “Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting,” Applied Energy, vol. 217, pp. 422-439, 5/1/2018. [Google Scholar]
  3. V. N. Vapnik, Statistical learning theory (no. Book, Whole). New York: Wiley, 1998. [Google Scholar]
  4. J. A. K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle, “Weighted least squares support vector machines: robustness and sparse approximation,” Neurocomputing, vol. 48, no. 1-4, pp. 85-105, 10// 2002. [Google Scholar]
  5. R. C. Deo, X. Wen, and F. Qi, “A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset,” Applied Energy, vol. 168, pp. 568-593, 2016. [Google Scholar]
  6. J. H. Friedman, “Multivariate adaptive regression splines,” The annals of statistics, pp. 1-67, 1991. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. Kenny, “Particle swarm optimization,” in Proc. 1995 IEEE Int. Conf. Neural Networks, 1995, pp. 1942-1948. [Google Scholar]
  8. R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on, 1995, pp. 39-43: IEEE. [CrossRef] [Google Scholar]
  9. X. Li and C. Li, “Improved CEEMDAN and PSO-SVR Modeling for Near-Infrared Noninvasive Glucose Detection,” Computational and mathematical methods in medicine, vol. 2016, 2016. [Google Scholar]
  10. M. N. Alam, “Particle Swarm Optimization: Algorithm and its Codes in MATLAB,” ed: ResearchGate, 2016. [Google Scholar]
  11. M. Hasanipanah, A. Shahnazar, H. B. Amnieh, and D. J. Armaghani, “Prediction of air-overpressure caused by mine blasting using a new hybrid PSO-SVR model,” Engineering with Computers, vol. 33, no. 1, pp. 23-31, 2017. [Google Scholar]
  12. AEMO. (2016). Aggregated Price and Demand Data - Historical. Available: http://www.aemo.com.au/ [Google Scholar]
  13. S. J. Jeffrey, J. O. Carter, K. B. Moodie, and A. R. Beswick, “Using spatial interpolation to construct a comprehensive archive of Australian climate data,” Environmental Modelling & Software, vol. 16, no. 4, pp. 309-330, 2001. [CrossRef] [Google Scholar]
  14. A. B. o. Statistics. (2018). Census. Available: http://www.abs.gov.au/ [Google Scholar]
  15. C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2, no. 3, p. 27, 2011. [Google Scholar]
  16. G. Jekabsons, “Adaptive Regression Splines toolbox for Matlab/Octave,” Version, vol. 1, p. 72, 2013. [Google Scholar]
  17. K. Mohammadi, S. Shamshirband, M. H. Anisi, K. A. Alam, and D. Petković, “Support vector regression based prediction of global solar radiation on a horizontal surface,” Energy Conversion and Management, vol. 91, pp. 433-441, 2// 2015. [Google Scholar]
  18. C. J. Willmott, S. M. Robeson, and K. Matsuura, “A refined index of model performance,” International Journal of Climatology, vol. 32, no. 13, pp. 2088-2094, 2012. [CrossRef] [Google Scholar]
  19. C. J. Willmott, “On the evaluation of model performance in physical geography,” in Spatial statistics and models : Springer, 1984, pp. 443-460. [CrossRef] [Google Scholar]
  20. C. J. Willmott, “Some comments on the evaluation of model performance,” Bulletin of the American Meteorological Society, vol. 63, no. 11, pp. 1309-1313, 1982. [Google Scholar]
  21. C. J. Willmott, “On the validation of models,” Physical geography, vol. 2, no. 2, pp. 184–194, 1981. [CrossRef] [Google Scholar]
  22. C. W. Dawson, R. J. Abrahart, and L. M. See, “HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts,” Environmental Modelling & Software, vol. 22, no. 7, pp. 1034–1052, 2007. [CrossRef] [Google Scholar]
  23. D. R. Legates and G. J. McCabe, “Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation,” Water resources research, vol. 35, no. 1, pp. 233-241, 1999. [Google Scholar]
  24. P. Krause, D. Boyle, and F. Bäse, “Comparison of different efficiency criteria for hydrological model assessment,” Advances in Geosciences, vol. 5, pp. 89-97, 2005. [CrossRef] [Google Scholar]
  25. T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature,” Geoscientific Model Development, vol. 7, no. 3, pp. 1247-1250, 2014. [Google Scholar]
  26. J. E. Nash and J. V. Sutcliffe, “River flow forecasting through conceptual models part I-A discussion of principles,” Journal of hydrology, vol. 10, no. 3, pp. 282-290, 1970. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.