Open Access
Issue
E3S Web Conf.
Volume 65, 2018
International Conference on Civil and Environmental Engineering (ICCEE 2018)
Article Number 05001
Number of page(s) 17
Section Environmental Engineering
DOI https://doi.org/10.1051/e3sconf/20186505001
Published online 26 November 2018
  1. Kelly, G., (1996). Environmental Engineering. McGraw Hill Publishing House: Maidenhead, England. [Google Scholar]
  2. Ibrahim H.T.Y. (2014). “Research on the Performance of Anoxic/Aerobic Moving Bed Biofilm Reactors for Domestic Wastewater Treatment”. PhD thesis, Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, China. [Google Scholar]
  3. Ibrahim H. T.Y., HE Q., and Al-Rekabi W. S. (2014). ” Effect of Gas/Water Ratio on the Performance of Combined Cylindrical Anoxic/Aerobic Moving Bed Biofilm Reactors for Biological Nutrients Removal from Domestic Wastewater by Fully Nitrification-Denitrification Processes“. Research Journal of Applied Sciences, Engineering and Technology, 7(13): 2655-2666. [CrossRef] [Google Scholar]
  4. Anthonisen A, L Chun-jie1, Geng Yan, Zhou Qi, GU Guowei. (1976). Inhibition of Nitrification by ammonia Nitroasid. J. Wat. Pollut. Control. 4: 825-835. [Google Scholar]
  5. Helmer C. Kunst S, Juretschko S, Schmid M C, Wagner M. (1999). Nitrogen Loss in a Nitrifying Biofilm System. Wat. Sci. Tech. 39 (7): 13-21. [CrossRef] [Google Scholar]
  6. Huang J, Chen M, Davis P. (1992). Biological fixed-film systems, A literature review. Water Environment Research, 64 (4) 359-378. [CrossRef] [Google Scholar]
  7. Halling-Sorensen B, Jorgensen S G. (1993). Removal of Nitrogen Compounds from Wastewater. Elsevier Publishers Amsterdam. [Google Scholar]
  8. Al-Ghusain IA, Hao OJ, Chen JM, Lin CF, Kim M, Torrents A. (1994). Biological fixed-film systems”, A literature review. Wat. Env. Res. 64 (4): 336-354. [CrossRef] [Google Scholar]
  9. Chen JM, Hao OJ, Al-Ghusain, IA, Lin CF. (1995). Biological fixed-film systems, A literature review. Wat. Env. Res. 67 (4): 450-469. [CrossRef] [Google Scholar]
  10. Rusten B, Broch-Due A, Westrum T. (1994) Treatment of pulp and paper industry wastewater in novel MBBR, Wat. Sci. Tech. 30 (3): 161-171. [Google Scholar]
  11. Rusten B, Siljudalen JG, Strand H. (1996) Upgrading of a biological- chemical treatment plant for cheese factory wastewater. Wat. Sci. Tech. 34 (11): 41-49. [CrossRef] [Google Scholar]
  12. Rusten B, Sehested O, Svendsen B. (2000) Pilot testing and preliminary design of MBBRs for nitrogen removal at the FREVAR wastewater treatment plant”, Wat. Sci. Tech. 41 (4-5): 13-20. [Google Scholar]
  13. Nam H.U., Lee J.H., Kim C.W., and Park T.J., (2000). “Enhanced Biological Nutrients Removal using the Combined Fixed-Film Reactor with Bypass Flow”. Wat. Res. 34(5), pp. 1570-1576. [CrossRef] [Google Scholar]
  14. Pastorlli G, Canzizni R, Rozzi A. (1999). Phosphorus and nitrogen removal in MBBRs. Wat. Sci. Tech. 40 (4-5): 169-176. [CrossRef] [Google Scholar]
  15. Andreottola, G., Foladori, P., Ragazzi, M., & Villa, R. (2002). Dairy wastewater treatment in a moving bed biofilm reactor. Water Science and Technology, 45 (12), 321-328. [CrossRef] [Google Scholar]
  16. Canziani, R., Emondi, V., Garavaglia, M., Malpei, F., Pasinetti, E., & Buttiglieri, G. (2006). Effect of oxygen concentration on biological nitrification and microbial kinetics in a cross-flow membrane bioreactor (MBR) and moving-bed biofilm reactor (MBBR) treating old landfill leachate. Journal of Membrane Science, 286, 202-212. [CrossRef] [Google Scholar]
  17. Falletti, L., & Conte, L. (2007). Upgrading of Activated Sludge Wastewater Treatment Plants with Hybrid Moving-Bed Biofilm Reactors. Industrial & Engineering Chemistry Research, 46, 6656-6660. [CrossRef] [Google Scholar]
  18. Ødegaard, H. (1999). The Moving Bed Biofilm Reactor. In Igarashi, T., Watanabe, Y., Asano, T. and Tambo, N.: Water Environmental Engineering and Reuse of Water. Hokkaido Press. [Google Scholar]
  19. Maurer M, Fux C, Graff M, Siegrist H (2000). Moving bed biological treatment (MBBT) of municipal wastewater: denitrification. Wat Sci Technol. 43: 337-344. [CrossRef] [Google Scholar]
  20. McQuarrie, J.P. & Boltz, J.P. (2011). Moving Bed Biofilm Reactor Technology: Process Applications, Design, and Performance. Water Environment Research 83(6): 560-575. [CrossRef] [Google Scholar]
  21. Ødegaard, H., Rusten, B., Swestrum, T., (1994). A new moving bed biofilm reactor applications and results. Wat. Sci. Tech., 29(10-11):157-165. [CrossRef] [Google Scholar]
  22. Delenfort, E., and Thulin, P., (1997). The use of Kaldnes suspended carrier process in treatment of wastewaters from the forest industry. Wat.Sci.Tech., 35(2-3):123-130. [Google Scholar]
  23. Javid, A.H., Hassani, A.H., Ghanbari, B. & Yaghmaeian, K. (2013). Feasibility of Utilizing Moving Bed Biofilm Reactor to Upgrade and Retrofit Municipal Wastewater Treatment Plants. Int. J. Environ. Res. 7(4): 963-972. [Google Scholar]
  24. Xiao, L.W., Rodgers, M., Mulqueen, J., (2007). Organic carbon and nitrogen removal from a strong wastewater using a denitrifying suspended growth reactor and a horizontal-flow biofilm reactor. Bioresource Technology., 98: 739-744. [CrossRef] [Google Scholar]
  25. Rusten, B., Eikebrokk, B., Ulgenes, Y. & Lygren, E. (2005). Design and operations of the Kaldnes moving bed biofilm reactors. Aquacult. Eng. In press. [Google Scholar]
  26. Welander, U., Henrysson, T. & Welander, T. (1997). Nitrification of landfill leachate using suspended-carrier biofilm technology. Wat. Res. 31: 2351-2355. [CrossRef] [Google Scholar]
  27. Jahren SJ, Rintala JA, Odegaard H (2002). Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions. Water Res. 36: 1067-1075. [CrossRef] [PubMed] [Google Scholar]
  28. Rusten B, Ødegaard H, Lundar A (1992). Treatment of dairy wastewater in a novel moving bed biofilm reactor. Water Sci Technol. 26: 703-711. [CrossRef] [Google Scholar]
  29. Rusten B, Hem L, Ødegaard H (1995a). Nitrification of municipal wastewater in moving-bed biofilm reactors. Water Environ Res. 67: 75-86. [CrossRef] [Google Scholar]
  30. Rusten B, Hem L, Ødegaard H (1995b). Nitrogen removal from dilute wastewater in cold climate using moving bed biofilm reactors. Water Environ Res. 67: 65-74. [CrossRef] [Google Scholar]
  31. Rusten B, Kolkinn O, Ødegaard H (1997). Moving bed biofilm reactors and chemical precipitation for high efficiency treatment of wastewater from small communities. Water Sci Technol. 35: 71-79. [CrossRef] [Google Scholar]
  32. Rusten, B., Johnson, C. H., Devall, S., Davoren, D., Cashion, B. S., (1999). Biological Pretreatment of a Chemical Plant Wastewater in High-Rate Moving Bed Biofilm Reactors. Water Sci. Tech. Vol. 39, No. 10-11, pp. 257-264. [CrossRef] [Google Scholar]
  33. Andreottola G., Foladori P., Ragazzi M., Tatano F., (2000a). Experimental comparison between MBBR and activated sludge system for the treatment of municipal wastewater. Water Sci. Technol. 41: 375-382. [CrossRef] [Google Scholar]
  34. Andreottola G., Foladori P., Ragazzi M., (2000b). Upgrading of a small wastewater treatment plant in a cold climate region using a moving bed biofilm reactor (MBBR) system. Water Sci. Technol. 41: 177-185. [CrossRef] [Google Scholar]
  35. Andreottola G, Foladori P, Gatti G, Nardelli P, Pettena M, Ragazzi M (2003). Upgrading of a Small Overloaded Activated Sludge Plant Using a MBBR System. J Environ Sci Health. Part A. A 38: 2317-2328. [CrossRef] [Google Scholar]
  36. American Public Health Association (APHA), American Water Works Association (AWWA) & Water Environment Federation (WEF): Standard Methods for the Examination of Water and Wastewater, 21th Edition, 2005. [Google Scholar]
  37. Helness H., (2007). Biological phosphorous removal in a moving bed biofilm reactor. Doctoral Dissertation, Norwegian University of Science and Technology, Norway. [Google Scholar]
  38. Cooper, P., Day, M., Thomas, V. (1994). Process options for phosphorus and nitrogen removal from wastewater. Journal of the institution of water and environmental management, 8, 84-92. [CrossRef] [Google Scholar]
  39. Metcalf, Eddy (2003). Wastewater Engineering: treatment and reuse, 4th, McGraw-Hill, Boston. [Google Scholar]
  40. Wang, J., and Yang, N., (2004). Partial nitrification under limited dissolved oxygen conditions. Process Biochemistry., 39:1223-1229. [CrossRef] [Google Scholar]
  41. Bernet N, Dangcong P, Delgenes JP, Moletta R (2001). Nitrification at low oxygen concentration in biofilm reactor. J Environ Eng ASCE. 127: 266-271. [CrossRef] [Google Scholar]
  42. Bae W, Baek S, Chung J, Lee Y (2001). Optimal operational factors for nitrite accumulation in batch reactors. Biodegradation 12: 359-366. [CrossRef] [Google Scholar]
  43. Ruiz G, Jeison D, Chamy R (2003). Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Wat Res. 37: 1371-1377. [CrossRef] [Google Scholar]
  44. Botrous AEF, Dahab MF, Mihaltz P (2004). Nitrification of high strength ammonium wastewater by a fluidized-bed reactor. Water Sci Technol. 49: 65-71. [CrossRef] [Google Scholar]
  45. Ciudad G, Rubilar O, Munoz P, Ruiz G, Chamy R, Vergara C, Jeison D (2005). Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process. Process Biochem. 40: 1715-1719. [CrossRef] [Google Scholar]
  46. Fux C, Velten S, Carozzi V, Solley D Keller J (2006). Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using an SBR with continuous loading. Water Res. 40, 2765-2775. [CrossRef] [PubMed] [Google Scholar]
  47. Van Hulle S.W.H., Vandeweyerb H.J.P., Meesschaertc B.D., Vanrolleghema P.A., Dejansb P., Dumoulinb A., (2010). Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chemical Engineering Journal 162:1-20. [CrossRef] [Google Scholar]
  48. Broda E., (1977). Two kinds of lithotrophs missing in nature. Zeitschrift fur Allgemeine Mikrobiologie. 17: 491-493. [CrossRef] [PubMed] [Google Scholar]
  49. Mulder A., van de Graaf A.A., Robertson L.A., Kuenen J.G. (1995). Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 16(3), 177-184. [CrossRef] [Google Scholar]
  50. Strous M., Heijnen J.J., Kuenen J.G., Jetten M.S.M. (1998). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium oxidizing microorganisms. Applied Microbiology and Biotechnology. 50(5):589-596. [CrossRef] [Google Scholar]
  51. Jetten M.S.M., Strous M., van de Pas-Schoonen T., Schalk J., van Dongen U.G.J.M., van de Graaf A.A., Logemann S., Muyzer G., van Loosdrecht M.C.M., Kuenen J.G., (1999). The anaerobic oxidation of ammonium, FEMS Microbiology Reviews 22:421-437. [CrossRef] [PubMed] [Google Scholar]
  52. Janssen, P.M.J., Meinema, K., van der Roest, H.F. (2002) Biological phosphorus Removal: Manual for design and operation, 1st. IWA Publishing, Amersfoort, Netherlands. [Google Scholar]
  53. Saito, T., Brdjanovic, D., Van Loosdrecht, M.C.M. (2004). Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Water Research, 38, 3760-3768. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.