Open Access
Issue
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
Article Number 02036
Number of page(s) 7
Section Bioenergy
DOI https://doi.org/10.1051/e3sconf/20186702036
Published online 26 November 2018
  1. EAWAG, 2008. Global Waste Challenge: Situation in Developing Countries. Eawag Aquatic Research, p. 2. [Google Scholar]
  2. UNEP., 2013. General Source of MSW and types of wastes. Available on file:///C:/Users/Anton_Kristanto/Downloads/UNEP%20GEAS%20bulletin%20October%202013%20(1).pdf Acessed onSeptember 16, 2017. [Google Scholar]
  3. Porteous, A., 2013. Energy from waste incineration-a state of the art emission review with an emphasis on public acceptability. Applied Energy, 70(2), pp. 157–167. [CrossRef] [Google Scholar]
  4. Chen, YC., Lo, SL., 2016. Evaluation of Greenhouse Gas Emissions for Several Municipal Solid Waste Management Strategies. Journal of Cleaner Production, 113, pp. 606–612 [CrossRef] [Google Scholar]
  5. Glasner, Christoph, Deerberg & Lyko, G. e., 2011. Hydrothermale Carbonisierung: Ein Überblick. Chemie Ingenieur Technik, Issue 83, No. 11, pp. 1932–1943. [CrossRef] [Google Scholar]
  6. Berg, N. et al., 2011. Hydrothermal Carbonization of Municipal Waste Streams. Environmental Science and Technology, 13(45), pp. 5696–5703. [CrossRef] [PubMed] [Google Scholar]
  7. Robbiani, Z., 2013. Hydrothermal Carbonization of Biowaste/fecal sludge. Acessed from https://www.eawag.ch/fileadmin/Domain1/Abteilungen/sandec/publikationen/SWM/Carbonization_of_Urban_Bio-waste/carbonization.pdf on August 28, 2017. [Google Scholar]
  8. Khan, A., De Jong, W., Jansens, P. & Spliethoff, H., 2009. Biomass combustion in fluidized bed boilers:potential problem and remedies. Fuel Processing Technology, 90(1), pp. 21–50. [CrossRef] [Google Scholar]
  9. Zhao, P. et al., 2014. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment, Applied Science Volume 131, pp. 345–367. [Google Scholar]
  10. Fernandez, 2016. Dewatering Produk Hasil Pengolahan Hidrotermal [personnal communication, Novermber 15, 2016). [Google Scholar]
  11. Darandono, 2016. Summarecon Serpong Mengolah Sampah Menjadi Energi Listrik. [Online] Available at: http://swa.co.id/swa/trends/summareconserpong-mengolah-sampah-menjadi-energi-listrik [Acessed on December 13, 2016]. [Google Scholar]
  12. DJ, H. Y., 1995. Measurement of bound water in sludges. Water Environment Research, 67 (3), pp. 310–317. [CrossRef] [Google Scholar]
  13. Saveyn, H. et al., 2009. Improved Dewatering by Hydrothermal Conversion of Sludge. Residuals Science and Technology, 6(1). [Google Scholar]
  14. Ramke, H.-G.; Blöhse, D.; Lehmann, H.-J.; Fettig, J., 2009: Hydrothermal Carbonization of Organic Waste in: Cossu, R.; Diaz, L. F.; Stegmann, R. (Edts.), 2009:Sardinia 2009: Twelfth International Waste Management and Landfill Symposium, Sardinia, Italy, 05-09 October 2009, Proceedings, CISA Publisher. [Google Scholar]
  15. ESDM, 2006. Batubara Indonesia. [Online] Available at http://www.tekmira.esdm.go.id/data/files/Batubara%20Indonesia.pdf Acessed on May 2017]. [Google Scholar]
  16. Ahmad, Z., Kai, H. & Harada, T., 2012. Factors affecting immobilization and release of nitrogen in soil and chemical characteristics of the. Soil Science and Plant Nutrition, Volume 15, p. 6. [Google Scholar]
  17. Yoshikawa, K., 2009. Hydrothermal Treatment of Municipal Solid Waste to Produce Solid Fuel. Yokohama, 7th International Energy Conversion Engineering Conference. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.