Open Access
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
Article Number 03005
Number of page(s) 5
Section Multifunctional and Advanced Materials
Published online 26 November 2018
  1. S. Dara and A. S. Berrouk, “Computer-based optimization of acid gas removal unit using modified CO2 absorption kinetic models,” International Journal of Greenhouse Gas Control, vol. 59, pp. 172–183, (2017). [CrossRef] [Google Scholar]
  2. S. Kartohardjono, A. Paramitha, A. A. Putri, and R. Andriant, “Effects of Absorbent Flow Rate on CO2 Absorption through a Super Hydrophobic Hollow Fiber Membrane Contactor,” International Journal of Technology, vol. Volume 8(8), pp. 1429–1435, (2017). [CrossRef] [Google Scholar]
  3. X. Liu, S. Yang, Z. Hu, and Y. Qian, “Simulation and assessment of an integrated acid gas removal process with higher CO2 capture rate,” Computers & Chemical Engineering, vol. 83, pp. 48–57, 2015/12/05/ (2015). [Google Scholar]
  4. E. L. Fornero, D. L. Chiavassa, A. L. Bonivardi, and M. A. Baltanás, “CO2 capture via catalytic hydrogenation to methanol:Thermodynamic limit vs. 'kinetic limit',” Catalysis Today, vol. 172, pp. 158–165, 2011/08/25/ (2011). [Google Scholar]
  5. X. An, Y. Zuo, Q. Zhang, and J. Wang, “Methanol Synthesis from CO2 Hydrogenation with a Cu/Zn/Al/Zr Fibrous Catalyst,” Chinese Journal of Chemical Engineering, vol. 17, pp. 88–94, 2009/02/01/ (2009). [CrossRef] [Google Scholar]
  6. G. Bonura, C. Cannilla, L. Frusteri, A. Mezzapica, and F. Frusteri, “DME production by CO2 hydrogenation: Key factors affecting the behaviour of CuZnZr/ferrierite catalysts,” Catalysis Today, vol. 281, Part 2, pp. 337–344, (2017). [Google Scholar]
  7. B. S. Adji and S. Kartohardjono, “Process Simulation of CO2 Utilization from Acid Gas Removal Unit for Dimethyl Ether Production,” Journal of Environmental Science and Technology, vol. 10, pp. 220–229, (2017). [CrossRef] [Google Scholar]
  8. D. Symes, B. Al-Duri, A. Dhir, W. Bujalski, B. Green, A. Shields, et al., “Design for On-Site Hydrogen Production for Hydrogen Fuel Cell Vehicle Refueling Station at University of Birmingham, U.K,” Energy Procedia, vol. 29, pp. 606–615, 2012/01/01 (2012). [Google Scholar]
  9. G. H. Graaf and A. A. C. M. Beenackers, “Comparison of two-phase and three-phase methanol synthesis processes,” Chemical Engineering and Processing: Process Intensification, vol. 35, pp. 413–427, (1996). [CrossRef] [Google Scholar]
  10. Y. Muharam and A. Kurniawan, “Computational Fluid Dynamic Application in Scale-up of a Stirred-batch Reactor for Degumming Crude Palm Oil,” International Journal of Technology, vol. Volume 7, pp. 1344–1351, (2016). [CrossRef] [Google Scholar]
  11. A. A. Kiss, J. J. Pragt, H. J. Vos, G. Bargeman, and M. T. de Groot, “Novel efficient process for methanol synthesis by CO2 hydrogenation,” Chemical Engineering Journal, vol. 284, pp. 260–269, 1/15/ 2016, (2016). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.