Open Access
Issue
E3S Web Conf.
Volume 73, 2018
The 3rd International Conference on Energy, Environmental and Information System (ICENIS 2018)
Article Number 05026
Number of page(s) 5
Section Environmental Technology and Pollution Control
DOI https://doi.org/10.1051/e3sconf/20187305026
Published online 21 December 2018
  1. Lukasiewicz, K., Teymourian, K., and Paschke , A., 2014, “A Rule-Based System for Monitoring of Microblogging Disease Report” The Semantic Web: ESWC 2014 Satellite Events - Lecture Notes in Computer Science 8798 401–406 [Google Scholar]
  2. Menteri Negara Lingkungan Hidup, 1997, “Keputusan Menteri Negara Lingkungan Hidup Nomor : KEP 45 / MENLH / 1997” Tentang Indeks Standar Pencemar Udara [Google Scholar]
  3. Aldossary, M., Almadni, O., Kharoshah, M., Alsaif, D., Alsowayigh, A., Alfaraidy, M., “Carbon monoxide toxicity in Dammam, KSA: Retrospective study” Egyptian Journal of Forensic Sciences (2015) 5, 36–38 [Google Scholar]
  4. Hampson NB, Weaver LK. “Carbon monoxide poisoning: a new incidence for an old disease” Undersea Hyperb Med 2007; 34:163–8. [PubMed] [Google Scholar]
  5. Douglas, C. G., Haldane, and J. S., Haldane, J. B. S., 1912, “The Laws Of Combination of Haemoglobin With Carbon Monoxide And Oxygen” J Physiol 44 275–304. [CrossRef] [PubMed] [Google Scholar]
  6. Lindell K. Weaver, M.D., 2009, “Carbon Monoxide Poisoning” The New England journal of medicine 360;12 [Google Scholar]
  7. Prockop, Leon., 2009, “Carbon Monoxide” Clinical Neurotoxicology - CHAPTER 45, Pages 500–514 [CrossRef] [Google Scholar]
  8. Otahalova, T., Slanina, Z., Vala, D., 2012, “Embedded Sensors System for Real-Time Biomedical Data Acquisition and Analysis” IFAC Proceedings Volumes Volume 45, Issue 7, 2012, Pages 261–264 [CrossRef] [Google Scholar]
  9. Downeya, J., Bombinskib, S., Nejmanb, M., Jemielniakb, K., 2015, “Automatic multiple sensor data acquisition system in a real-time production environment” 9th CIRP Conference on Intelligent Computation in Manufacturing Engineering [Google Scholar]
  10. Uhlemanna, T. H. J., Schocka, C., Lehmanna, C., Freibergera, S., Steinhilpera, R., 2017, “The Digital Twin: Demonstrating the potential of real time data acquisition in production systems” 7th Conference on Learning Factories, CLF 2017 [Google Scholar]
  11. Folkers, A., Mosch, F., Malina, T., Hofmann, U. G., 2003, “Realtime bioelectrical data acquisition and processing from 128 channels utilizing the wavelet-transformation” Neurocomputing 52–54 (2003) 247–254 [Google Scholar]
  12. Kar , J., Vaughan, M. A., Liu, Z., Omar, A. H., Trepte, C. R., Tackett, J., Fairlie, T. D., Kowch, R., 2015, “Detection of pollution outflow from Mexico City using CALIPSO lidar measurements” Remote Sensing of Environment 169 (2015) 205–211 [Google Scholar]
  13. Rai, A. C.,Kumar, P., Pilla, F., Skouloudis, A. N., Sabatino, S. D., Ratti, C., Yasar, A., Rickerby, D., 2017, “End-user perspective of low-cost sensors for outdoor air pollution monitoring” Science of the Total Environment 607-608 (2017) 691–705 [CrossRef] [Google Scholar]
  14. Suryono, S., Suseso, J. E., Mashuri, C., Sabila, A. D., Nugraha, J. A. M., Primasiwi, M. H., 2017, “RFID Sensor for Automated Prediction of Reorder Point (ROP) Values in a Vendor Management Inventory (VMI) System Using Fuzzy Time Series” Adavanced Science Letters Vol 23 2398–2400 [CrossRef] [Google Scholar]
  15. Sun, W., Zhang, H., Palazoglu, A., Singh, A., Zhang, W., Liu, S., 2013, “Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different mission distributions in Northern California” Sci. Total Environ. 443 [Google Scholar]
  16. Pai, T.Y., Hanaki, K., Chiou, R.J., 2013, “Forecasting hourly roadside particulate matter in Taipei county of Taiwan based on first-order and one-variable grey model” Clean e Soil Air Water 41, 737–742. [CrossRef] [Google Scholar]
  17. Moazami, A., Noori, R., Amiri, B. J., Jabbarian, B., Yeganeh, B., Partani, S., Safavi, S., 2015, “Reliable prediction of carbon monoxide using developed support vector machine” Atmospheric Pollution Research Volume 7, Issue 3, May 2016, Pages 412–418 [Google Scholar]
  18. Aripin, A., Suryono, S., Bayu, S., 2016, “Web based prediction of pollutant PM10 concentration using Ruey Chyn Tsaur fuzzy time series model” AIP Conference Proceedings Volume 1746, Issue 1 [Google Scholar]
  19. Dincer, N. G., Akkus, O., 2018, “A new fuzzy time series model based on robust clustering for forecasting ofair pollution” Ecological Informatics 43 (2018) 157–164 [Google Scholar]
  20. Suryono, S., Surarso, B., Saputra. R., Bardadi. A., 2017, “A Web-Based Wireless Sensor System to Measure Carbon Monoxide Concentration” 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI) [Google Scholar]
  21. Nastro, V., Carni, D.L., Vitale, A., Lamonaca, F., Vasile, M.,2018, “Passive and active methods for Radon pollution measurements in historical heritage buildings” Measurement Volume 114, January 2018, Pages 526–533 [CrossRef] [Google Scholar]
  22. Sammarcoa, M., Tse, R., Paua, G., Marfia, G.,2017, “Using geosocial search for urban air pollution monitoring” Pervasive and Mobile Computing Volume 35 - 2017 Pages 15–3 [Google Scholar]
  23. Noblesa, C. J., Schistermana, E. F., Haa. S., Kima, K., Mumforda, S. L., Louisc, G. M. B., Chend, Z., Liud, D., Shermane, S., Mendolaa, P., 2018, “Ambient air pollution and semen quality” Environmental Research 163 (2018) 228–236 [CrossRef] [PubMed] [Google Scholar]
  24. Mukerjee, S., Smith, L., Brantley, H., Stallings. C., Neas, L., Kimbrough, S., Williams, R., 2015, “Comparison of modeled traffic exposure zones using on-road air pollution measurements” Atmospheric Pollution Research 6 (2015) 82–87 [Google Scholar]
  25. Suryono, S., Surarso, B., Bardadi, A., 2017, “Wireless Sensor System for Prediction of Carbon Monoxide Concentration using Fuzzy Time Series” Proc. EECSI 2017 567–572 [Google Scholar]
  26. Espino, D. J., Lopez, E. C., Hernandez, J. R., Munoz, F. B., 2018, “Air quality modelling in Catalonia from a combination of solar radiation, surface reflectance and elevation” Science of the Total Environment 624 (2018) 189–200 [CrossRef] [Google Scholar]
  27. Wang, J., Zhang, X., Guo, Z., Lu, H., 2017, “Developing an early-warning system for air quality prediction and assessment of cities in China” Expert Systems with Applications Volume 84, 30 October 2017, Pages 102–116 [Google Scholar]
  28. Mishra, D., Goyal, P., 2016, “Neuro-fuzzy approach to forecast NO2 pollutants addressed to air quality dispersion model over Delhi”, India. Aerosol Air Qual. Res. 16, 166–174. [CrossRef] [Google Scholar]
  29. Steffens, J., Kimbrough, S., Baldauf, R., Isakov, V., Brown, R., Powell, A., Deshmukh, P., 2017, “Near-port air quality assessment utilizing a mobile measurement approach” Atmospheric Pollution Research Volume 8, Issue 6, November 2017, Pages 1023–1030 [Google Scholar]
  30. Buchanan, B. G., 1983, “Principles of Rule-Based Expert Systems” Department of Computer Science - Stanford University Stanford. California [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.