Open Access
E3S Web Conf.
Volume 78, 2019
2018 International Seminar on Food Safety and Environmental Engineering (FSEE 2018)
Article Number 02005
Number of page(s) 4
Section Food Safety, Extraction and Food Engineering
Published online 15 January 2019
  1. A.D. Cooper, J.A. Tarbin, W.H.H. Farrington, G. Shearer, Aspects of extraction, spiking and distribution in the determination of incurred residues of chloramphenicol in animal tissues. Food Additves & Contaminants, 15, 637-644 (1998) [CrossRef] [Google Scholar]
  2. R.L. Epstein, International validation study for the determination of chloramphenicol in bovine muscle. Journal of AOAC International, 77, 570-576 (1994) [PubMed] [Google Scholar]
  3. S. Borner, H. Fry, G. Balizs, R. Kroker, Confirmation of chloramphenicol residues in egg by gas chromatography/high-resolution mass spectrometry and comparison of quantitation with gas chromatography-Electron capture detection. Journal of AOAC International, 78, 1153-1160 (1995) [PubMed] [Google Scholar]
  4. A. Gantverg, I. Shishani, M. Hoffman, Determination of chloramphenicol in animal tissues and urine liquid chromatography-tandem mass spectrometry versus gas chromatography-mass spectrometry. Analytica Chemica Acta, 483, 125-135 (2003) [CrossRef] [Google Scholar]
  5. K. Fujita, H. Ito, M. Nakamura, M. Watai, Determination of chloramphenicol residues in Bee pollen by liquid chromatography/tandem mass spectrometry. Journal of AOAC International, 91, 1103-1109 (2008) [PubMed] [Google Scholar]
  6. S. R. Rocha Siqueira, J. Luiz Donato, G. de Nucci, F.G.R. Reyes, A highthroughput method for determining chloramphenicol residues in poultry, egg, shrimp, fish, swine and bovine using LC-ESI-MS/MS. Journal of Separation Science, 32, 4012-4019 (2009) [CrossRef] [PubMed] [Google Scholar]
  7. R.W. Fedeniuk, M. Mizuno, C. Neiser, C. O’Byrne, Development of LC-MS/MS methodology for the detection/determination and confirmation of chloramphenicol, chloramphenicol 3-O-b-Dglucuronide, florfenicol, florfenicol amine and thiamphenicol residues in bovine, equine and porcine liver. Journal of Chromatography B, 991, 68-78 (2015) [CrossRef] [Google Scholar]
  8. A. Posyniak, J. Zmudzki, J. Niedzielska, Evaluation of sample preparation for control of chloramphenicol residues in porcine tissues by enzyme-linked immunosorbent assay and liquid chromatography. Analytica Chemica Acta, 483, 307-311 (2003) [CrossRef] [Google Scholar]
  9. W.L. Liu, R.J. LEE, M.R. LEE. Supercritical fluid extraction in situ derivatization for simultaneous determination of chloramphenicol, florfenicol and thiamphenicol in shrimp. Food Chemistry, 121:797-802 (2003) [Google Scholar]
  10. J.R. Shakila, R. Saravanakumar, S. Vyla, et al. An improved microbial assay for detection of chloramphenicol residues in shrimp tissues. Innovative Food Science and Emerging Technologies, 8: 515-518(2007) [CrossRef] [Google Scholar]
  11. Y.B. Lu, T.L. Zheng, X. He. Rapid determination of chloramphenicol in soft-shelled turtle tissues using on-line MSPD-HPLC-MS/MS. Food Chemistry, 134: 533-539(2012) [Google Scholar]
  12. K. Li L. Liu C. Xu X. Chu. Rapid determination of chloramphenicol residues in aquaculture tissues by immunochromatographic assay. Analytical Sciences, 23 (11):1281-1284(2007) [CrossRef] [Google Scholar]
  13. E. Gikas, P. Kormali, D. Tsipi, A. Tsarbopoulos. Development of a rapid and sensitive SPE-LC-ESI MS/MS method for the determination of chloramphenicol in seafood. Journal of Agricultural & Food Chemistry, 52 (5): 1025-30(2004) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.