Open Access
Issue
E3S Web Conf.
Volume 80, 2019
2018 International Conference on Renewable Energy and Environment Engineering (REEE 2018)
Article Number 02004
Number of page(s) 5
Section Power Engineering and Mechatronics
DOI https://doi.org/10.1051/e3sconf/20198002004
Published online 15 January 2019
  1. M. Guarnieri, P. Mattavelli, G. Petrone, and G. Spagnuolo, “Vanadium Redox Flow Batteries,” no. december 2016, pp. 20-31, 1932. [Google Scholar]
  2. T. M. I. Mahlia, T. J. Saktisahdan, A. Jannifar, M. H. Hasan, and H. S. C. Matseelar, “A review of available methods and development on energy storage; Technology update,” Renew. Sustain. Energy Rev., vol. 33, pp. 532-545, 2014. [CrossRef] [Google Scholar]
  3. C. P. De Le and F. C. Walsh, "Redox flow cells for energy conversion," vol. 160, pp. 716-732, 2006. [Google Scholar]
  4. M. Rusllim Mohammad, S. M. Sharkh, and F. C. Walsh, “Redox flow batteries for hybrid electric vehicles: progress and challenges,” 2009 IEEE Veh. Power Propuls. Conf., no. August 2016, pp. 551-557, 2010. [Google Scholar]
  5. A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick, and Q. Liu, “Redox flow batteries: A review,” J. Appl. Electrochem., vol. 41, no. 10, pp. 1137-1164, 2011. [Google Scholar]
  6. G. R. Fisher, M. Ieee, M. R. Anstey, V. V Viswanathan, and M. L. Perry, "Redox Flow Batteries : An Engineering Perspective," pp. 1-24, 2014. [Google Scholar]
  7. T. Jyothi Latha and S. Jayanti, “Hydrodynamic analysis of flow fields for redox flow battery applications Batteries,” J. Appl. Electrochem., vol. 44, no. 9, pp. 995-1006, 2014. [Google Scholar]
  8. A. C. Khor., et al. “Numerical investigation on serpentine flow field and rhombus electrolyte compartment of vanadium redox flow battery (V-RFB),” ARPN J. Eng. Appl. Sci., vol. 11, no. 10, 2016. [Google Scholar]
  9. T. Mohammadi, “Characterisation of novel composite membrane for redox flow battery applications,” vol. 98, pp. 77-87, 1995. [Google Scholar]
  10. P. K. Leung, M. R. Mohamed, A. A. Shah, Q. Xu, and M. B. Conde-duran, "A mixed acid based vanadium e cerium redox fl ow battery with a zero-gap serpentine architecture," vol. 274, pp. 651-658, 2015. [Google Scholar]
  11. P. Leung, J. Palma, E. Garcia-quismondo, L. Sanz, M. R. Mohamed, and M. Anderson, “Evaluation of electrode materials for all-copper hybrid fl ow batteries,” J. Power Sources, vol. 310, pp. 1-11, 2016. [Google Scholar]
  12. M. R. Mohamed, P. K. Leung, and M. H. Sulaiman, “Performance characterization of a vanadium redox flow battery at different operating parameters under a standardized test-bed system,” Appl. Energy, vol. 137, pp. 402-412, 2015. [Google Scholar]
  13. J. Houser, A. Pezeshki, J. T. Clement, D. Aaron, and M. M. Mench, “Architecture for improved mass transport and system performance in redox fl ow batteries,” J. Power Sources, vol. 351, pp. 96-105, 2017. [Google Scholar]
  14. S. Kumar and S. Jayanti, “Effect of flow field on the performance of an all-vanadium redox flow battery,” J. Power Sources, vol. 307, pp. 782-787, 2016. [Google Scholar]
  15. X. Ma, H. Zhang, C. Sun, Y. Zou, and T. Zhang, “An optimal strategy of electrolyte flow rate for vanadium redox flow battery,” J. Power Sources, vol. 203, pp. 153-158, 2012. [Google Scholar]
  16. A. Tang, J. Bao, and M. Skyllas-Kazacos, “Studies on pressure losses and flow rate optimization in vanadium redox flow battery,” J. Power Sources, vol. 248, pp. 154-162, 2014. [Google Scholar]
  17. a C. Khor, M. R. Mohamed, M. H. Sulaiman, and M. R. Daud, “Packaging Improvement for Unit Cell Vanadium Redox Flow Battery ( V-RFB ),” no. 6, pp. 808-811, 2014. [Google Scholar]
  18. C. Blanc, S. Member, and I. A. Rufer, "Multiphysics and Energetic Modeling of a Vanadium Redox Flow Battery," 2008. [Google Scholar]
  19. Q. Xu, T. S. Zhao, and C. Zhang, “Performance of a vanadium redox flow battery with and without flow fields,” Electrochim. Acta, vol. 142, pp. 61-67, 2014. [Google Scholar]
  20. D. H. Jeon, S. Greenway, S. Ã. Shimpalee, and J. W. Van Zee, "The effect of serpentine flow-field designs on PEM fuel cell performance," vol. 33, pp. 1052-1066, 2008. [Google Scholar]
  21. Q. Xu, T. S. Zhao, and P. K. Leung, “Numerical investigations of flow field designs for vanadium redox flow batteries,” Appl. Energy, vol. 105, pp. 47-56, 2013. [Google Scholar]
  22. Q. Wang, Z. G. Qu, Z. Y. Jiang, and W. W. Yang, “Numerical study on vanadium redox fl ow battery performance with non- uniformly compressed electrode and serpentine fl ow fi eld,” vol. 220, no. September 2017, pp. 106-116, 2018. [Google Scholar]
  23. S. Bortolin, P. Toninelli, D. Maggiolo, M. Guarnieri, and D. Del Col, “CFD study on electrolyte distribution in redox flow batteries,” J. Phys. Conf. Ser., vol. 655, no. November, p. 12049, 2015. [Google Scholar]
  24. S. Ressel, A. Laube, S. Fischer, A. Chica, T. Flower, and T. Struckmann, “Performance of a vanadium redox fl ow battery with tubular cell design,” J. Power Sources, vol. 355, pp. 199-205, 2017 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.