Open Access
Issue
E3S Web Conf.
Volume 83, 2019
2018 International Symposium on Hydrogen Energy and Energy Technologies (HEET 2018)
Article Number 01002
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/20198301002
Published online 11 February 2019
  1. E.U. Franck, Fluids at high pressures and temperatures. J. Chem. Thermodyn. 19, 225-242, (1987) [CrossRef] [Google Scholar]
  2. W. Schilling, E.U. Franck, Combustion and Diffusion Flames At High Pressures To 2000 Bar. Physical Chem. Chem. Phys. 92, 631-636, (1988) [Google Scholar]
  3. M. Modell, Supercritical Water : Testing Reveals New Process Holds Promise. Solid Waste Manag. 25, 26-28, 30, 76, (1982) [Google Scholar]
  4. H. Ma, Fundamental Research on Power-Generating System Coupling of Gasification and Hydrothermal Combustion of Coal in Supercritical Water. Xi’an Jiaotong University .(2013) [Google Scholar]
  5. F. Zhang, Y. Zhang, C. Xu, S. Chen, G. Chen, C. Ma, Experimental Study on the Ignition and Extinction Characteristics of the Hydrothermal Flame. Chem. Eng. Technol. 38, 2054-2066, (2015) [CrossRef] [Google Scholar]
  6. C. Augustine, J.W. Tester, Hydrothermal flames: From phenomenological experimental demonstrations to quantitative understanding. J. Supercrit. Fluids. 47, 415-430, (2009) [CrossRef] [Google Scholar]
  7. S.N. Reddy, S. Nanda, U.G. Hegde, M.C. Hicks, J.A. Kozinski, Ignition of hydrothermal flames. RSC Adv. 5, 36404-36422, (2015) [CrossRef] [Google Scholar]
  8. R.R. Steeper, S.F. Rice, M.S. Brown, S.C. Johnston, Methane and methanol diffusion flames in supercritical water. J. Supercrit. Fluids. 5, 262-268, (1992) [CrossRef] [Google Scholar]
  9. A. Sobhy, I.S. Butler, J.A. Kozinski,. Selected profiles of high-pressure methanol-air flames in supercritical water. Proc. Combust. Inst. 31 II, 3369-3376, (2007) [CrossRef] [Google Scholar]
  10. B. Wellig, Transpiring wall reactor for supercritical water oxidation. Swiss Federal Institute of Technology Zurich. (2003) [Google Scholar]
  11. K. Príkopský, Characterization of continuous diffusion flames in supercritical water. Swiss Federal Institute of Technology Zurich. (2007) [Google Scholar]
  12. T. Meier, P. Stathopoulos, P. Rudolf von Rohr, Hot surface ignition of oxygen-ethanol hydrothermal flames. J. Supercrit. Fluids. 107, 462-468, (2016) [CrossRef] [Google Scholar]
  13. B. Wellig, M. Weber, K. Lieball, K. Príkopský, P. Rudolf von Rohr, Hydrothermal methanol diffusion flame as internal heat source in a SCWO reactor. J. Supercrit. Fluids. 49, 59-70, (2009) [CrossRef] [Google Scholar]
  14. M.D. Bermejo, P. Cabeza, M. Bahr, R. Fernández, V. Ríos, C. Jiménez, M.J. Cocero, Experimental study of hydrothermal flames initiation using different static mixer configurations. J. Supercrit. Fluids. 50, 240-249, (2009) [CrossRef] [Google Scholar]
  15. P. Cabeza, J.P. Queiroz, S. Arca, C. Jiménez, A. Gutiérrez, M.D. Bermejo, M.J. Cocero, Sludge destruction by means of a hydrothermal flame. Optimization of ammonia destruction conditions. Chem. Eng. J. 232, 1-9, (2013) [CrossRef] [Google Scholar]
  16. M.D. Bermejo, P. Cabeza, J.P.S. Queiroz, C. Jiménez, M.J. Cocero, Analysis of the scale up of a transpiring wall reactor with a hydrothermal flame as a heat source for the supercritical water oxidation. J. Supercrit. Fluids. 56, 21-32, (2011) [CrossRef] [Google Scholar]
  17. Y. Li, S. Wang, M. Ren, J. Zhang, D. Xu, L. Qian, P. Sun, Recent advances on research and application on supercritical hydrothermal combustion technology. Chem. Ind. Eng. Prog. 35, 1942-1955, (2016) [Google Scholar]
  18. J.U. Steinle, E.U. Franck, High-Pressure Combustion - Ignition Temperatures To 1000 Bar. Berichte Der Bunsen-Gesellschaft-Physical Chem. Chem. Phys. 99, 66-73. (1995) [CrossRef] [Google Scholar]
  19. T. Hirth, E.U. Franck, Oxidation and Hydrothermolysis of Hydrocarbons in Supercritical Water at High Pressures. Berichte der Bunsengesellschaft für Phys. Chemie. 97, 1091-1097, (1993) [CrossRef] [Google Scholar]
  20. S.N. Reddy, S. Nanda, U.G. Hegde, M.C. Hicks, J.A. Kozinski, Ignition of n-propanolair hydrothermal flames during supercritical water oxidation. Proc. Combust. Inst. 36, 2503-2511, (2017) [CrossRef] [Google Scholar]
  21. M. Ren, S. Wang, C. Yang, H. Xu, Y. Guo, D. Roekaerts, Supercritical water oxidation of quinoline with moderate preheat temperature and initial concentration. Fuel. 236, 1408-1414, (2019) [CrossRef] [Google Scholar]
  22. C. Narayanan, C. Frouzakis, K. Boulouchos, K. Príkopský, B. Wellig, P. Rudolf von Rohr, Numerical modelling of a supercritical water oxidation reactor containing a hydrothermal flame. J. Supercrit. Fluids. 46, 149-155,(2008) [CrossRef] [Google Scholar]
  23. M. Weber, Apparate einer SCWO-Anlage und deren Leistungsfähigkeit. Swiss Federal Institute of Technology Zurich. (1997) [Google Scholar]
  24. R.M. Serikawa, T. Usui, T. Nishimura, H. Sato, S. Hamada, H. Sekino, Hydrothermal flames in supercritical water oxidation: Investigation in a pilot scale continuous reactor. Fuel. 81, 1147-1159, (2002) [CrossRef] [Google Scholar]
  25. M. Weber, C. Trepp, Required fuel contents for sewage disposal by means of supercritical wet oxidation (SCWO) in a pilot plant containing a wall cooled hydrothermal burner (WCHB). Process Technol. Proc. 12, 565-574, (1996) [CrossRef] [Google Scholar]
  26. G.M. Pohsner, E.U. Franck, Spectra and temperatures of diffusion flames at high pressures to 1000 bar. Physical Chem. Chem. Phys. 98, 1082-1090, (1994) [Google Scholar]
  27. H.L. Roche, Wandgekühlter Hydrothermal-Brenner (WHB) für die überkritische Nassoxidation. Swiss Federal Institute of Technology Zurich. (1996) [Google Scholar]
  28. H. Sato, S. Hamada, R.M. Serikawa, T. Nishimura, T. Usui, H. Sekino, Continuous flame oxidation in supercritical water. High Press. Res. 20, 403-413, (2001) [CrossRef] [Google Scholar]
  29. P. Cabeza, M.D. Bermejo, C. Jiménez, M.J. Cocero, Experimental study of the supercritical water oxidation of recalcitrant compounds under hydrothermal flames using tubular reactors. Water Res. 45, 2485-2495, (2011) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.