Open Access
Issue
E3S Web Conf.
Volume 83, 2019
2018 International Symposium on Hydrogen Energy and Energy Technologies (HEET 2018)
Article Number 01011
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/20198301011
Published online 11 February 2019
  1. Elsamadony, M., Tawfik, A., Danial, A., Suzuki, M.: Use of Carica Papaya Enzymes for Enhancement of H2 Production and Degradation of Glucose, Protein, and Lipids. Energy Procedia. 75, 975-980 (2015). [Google Scholar]
  2. Ismail, S., Elsamadony, M., Elreedy, A., Fujii, M., Tawfik, A.: Physico-chemical and microbial characterization of compartment-wise profiles in an anammox baffled reactor. J. Environ. Manage. 232, 875-886 (2019). [Google Scholar]
  3. Ismail, S., Elsamadony, M., Fujii, M., Tawfik, A.: Evaluation and optimization of anammox baffled reactor (AnBR) by artificial neural network modeling and economic analysis. Bioresour. Technol. 271, 500-506 (2019). [Google Scholar]
  4. Elsamadony, M., Tawfik, A., Danial, A., Suzuki, M.: Optimization of hydrogen production from organic fraction of municipal solid waste ( OFMSW ) dry anaerobic digestion with analysis of microbial community. Int. J. Energy Res. 39, 929-940 (2015). [CrossRef] [Google Scholar]
  5. Elsamadony, M., Tawfik, A.: Dry anaerobic co-digestion of organic fraction of municipal waste with paperboard mill sludge and gelatin solid waste for enhancement of hydrogen production. Bioresour. Technol. 191, 157-165 (2015). [Google Scholar]
  6. Elsamadony, M., Tawfik, A., Suzuki, M.: Surfactant-enhanced biohydrogen production from organic fraction of municipal solid waste (OFMSW) via dry anaerobic digestion. Appl. Energy. 149, 272-282 (2015). [Google Scholar]
  7. Farghaly, A., Elsamadony, M., Ookawara, S., Tawfik, A.: Bioethanol production from paperboard mill sludge using acid-catalyzed bio-derived choline acetate ionic liquid pretreatment followed by fermentation process. Energy Convers. Manag. 145, 255-264 (2017). [Google Scholar]
  8. Mostafa, A., Elsamadony, M., El-Dissouky, A., Elhusseiny, A., Tawfik, A.: Biological H2potential harvested from complex gelatinaceous wastewater via attached versus suspended growth culture anaerobes. Bioresour. Technol. 231, 9-18 (2017). [Google Scholar]
  9. Soltan, M., Elsamadony, M., Tawfik, A.: Biological hydrogen promotion via integrated fermentation of complex agro-industrial wastes. Appl. Energy. 185, 929-938 (2017). [Google Scholar]
  10. Elsamadony, M., Tawfik, A.: Maximization of hydrogen fermentative process from delignified water hyacinth using sodium chlorite. Energy Convers. Manag. 157, 257-265 (2018). [Google Scholar]
  11. Wazeri, A., Elsamadony, M., Tawfik, A.: Carbon emissions reduction by catalyzing H2 gas harvested from water hyacinth fermentation process using metallic salts. Energy Procedia. 152, 1254-1259 (2018). [Google Scholar]
  12. Dias, T., Fragoso, R., Duarte, E.: Anaerobic co-digestion of dairy cattle manure and pear waste. Bioresour. Technol. 164, 420-3 (2014). [Google Scholar]
  13. Turner, J., Sverdrup, G., Mann, M.K., Maness, P., Kroposki, B., Ghirardi, M., Evans, R.J., Blake, D.: Renewable hydrogen production. Int. J. Energy Res. 32, 379-407 (2008). [CrossRef] [Google Scholar]
  14. Irmak, S., Öztürk, İ.: Hydrogen rich gas production by thermocatalytic decomposition of kenaf biomass. Int. J. Hydrogen Energy. 35, 5312-5317 (2010). [Google Scholar]
  15. Tawfik, A., Salem, A.H.: Optimization of hydrogen production from pretreated rice straw waste in a mesophilic up- fl ow anaerobic staged reactor. Int. J. Energy Res. (2013). [Google Scholar]
  16. Wazeri, A., Elsamadony, M., Roux, S. Le Peu, P., Tawfik, A.: Potentials of using mixed culture bacteria incorporated with sodium bicarbonate for hydrogen production from water hyacinth. Bioresour. Technol. 263, 365-374 (2018). [Google Scholar]
  17. Romero Aguilar, M. a., Fdez-Güelfo, L. a., Álvarez-Gallego, C.J., Romero García, L.I.: Effect of HRT on hydrogen production and organic matter solubilization in acidogenic anaerobic digestion of OFMSW. Chem. Eng. J. 219, 443-449 (2013). [Google Scholar]
  18. Elsheikh, M.A., Saleh, H.I., Rashwan, I.M., El-Samadoni, M.M.: Hydraulic modelling of water supply distribution for improving its quantity and quality. Sustain. Environ. Resour. 23, 403-411 (2013). [Google Scholar]
  19. Mu, V.: Energy Conservation in Acetogenic. Appl. Environ. Microbiol. 69, 6345-6353 (2003). [Google Scholar]
  20. Tawfik, A., Elsamadony, M.: Development of Dry Anaerobic Technologies of Bio-waste and Unlock the Barriers for Valorization. In: Purohit, H.J., Kalia, V.C., Vaidya, A.N., and Khardenavis, A.A. (eds.) Optimization and Applicability of Bioprocesses. pp. 267-282. Springer Singapore, Singapore (2017). [CrossRef] [Google Scholar]
  21. Elsamadony, M., Tawfik, A.: Potential of biohydrogen production from organic fraction of municipal solid waste (OFMSW) using pilot-scale dry anaerobic reactor. Bioresour. Technol. 196, 9-16 (2015). [Google Scholar]
  22. Rapport, J., Zhang, R., Jenkins, B.M., Williams, R.B., Schwarzenegger, A., Adams, L.S., Brown, M.R., Chair, B., Chesbro, W., Member, B., Petersen, G., Mulé, R.: Current Anaerobic Digestion Technologies Used for Treatment of Municipal Organic Solid Waste. (2008). [Google Scholar]
  23. De Baere, L.: The Dranco Technology: A unique digestion technology for solid organic waste. Org. Waste Syst. Pub. Brussels, Beligium. 1-8 (2010). [Google Scholar]
  24. Benbelkacem, H., Bollon, J., Bayard, R., Escudié, R., Buffière, P.: Towards optimization of the total solid content in high-solid (dry) municipal solid waste digestion. Chem. Eng. J. 273, 261-267 (2015). [Google Scholar]
  25. Benbelkacem, H., Garcia-Bernet, D., Bollon, J., Loisel, D., Bayard, R., Steyer, J.P., Gourdon, R., Buffière, P., Escudié, R.: Liquid mixing and solid segregation in high-solid anaerobic digesters. Bioresour. Technol. 147, 387-394 (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.